
CANSim: When to Utilize Synchronous and Asynchronous Routers

in Large and Complex NoCs
Tom Glint

IIT Gandhinagar, India

tom.issac@iitgn.ac.in

Manu Awasthi

Ashoka University, India

manu.awasthi@ashoka.edu.in

Joycee Mekie

IIT Gandhinagar, India

joycee@iitgn.ac.in

Abstract—Asynchronous routers offer benefits in latency, en-
ergy, and area over synchronous routers, but their large system
design adoption is limited due to inadequate tool support for per-
formance quantification. We introduce CANSim, a fast and accu-
rate simulator for complex asynchronous and synchronous NoCs.
Verified against synthesis models, CANSim models any graph-
representable topology, asymmetric links, data-dependent delays,
meta-stability, and supports synthetic and real-world traffic. It
also accommodates power gating, hierarchical networks, and
GALS-like networks. Our comparisons reveal that asynchronous
NoCs provide lower packet latency at no-load conditions, but
synchronous NoCs may outperform near saturation. On average,
asynchronous NoCs offer up to 36% latency and 52% power
benefits, with power-gating potentially reducing static power by
90%.

Index Terms—Synchronous NoC, Asynchronous NoC, Simula-
tor, Complex NoCs

I. INTRODUCTION

Networks-on-chip (NoC) are a standard way of facilitat-

ing on-chip communication between numerous computational

elements inside a chip. These NoCs are implemented with

either synchronous routers or asynchronous routers [1]. There

are four main advantages of using asynchronous routers over

synchronous routers in an NoC. First, individual stages can

operate at their speed in the communication pipeline lead-

ing to system-level performance benefits [2]. In contrast, in

synchronous designs, all stages operate at the speed of the

slowest stage. Second, they eliminate the need for global

clock management across a large chip [1], [3]. Third, unlike

worst-case clocked synchronous designs, flit types in an asyn-

chronous NoC can have separate timing paths within the router

[2]. Fourth, asynchronous routers have lower latency and

area than a comparable synchronous router [2]. However, the

adoption of asynchronous routers in system design has been

lagging due to a lack of tool support to quantify system-level

performance. This work aims to fill this void and provides a

tool for comparing complex synchronous and asynchronous

NoCs. Further, we identify various network conditions, based

on topology and traffic pattern where asynchronous NoCs have

lower latency than synchronous NoCs.

Existing comparisons between NoCs with state-of-the-art

synchronous and asynchronous routers are limited to 4×4 2D

mesh topologies and are obtained with the help of synthe-

sis tools [2]–[4]. From the system design viewpoint, using

synthesis tools to compare candidate designs is not practical

due to two major limitations. First, the scalability of synthesis

level models for simulation is limited [5]. Second, a system-

level comparison of multiple NoCs needs to be obtained

earlier in the design phase before dedicating resources to

implementing candidate designs at the synthesis level. A

This work is supported through grants received from Science and Engineer-
ing Research Board (SERB), Government of India, under SERB-SUPRA grant
SPR/2020/000450, and Semiconductor Research Corporation (SRC) through
contracts 2020-IR-3005 and 2020-IR-2980

fast and accurate approach is necessary to compare multiple

complex synchronous and asynchronous designs.

Main Contributions: We propose a Complex Asyn-

chronous NoC Simulator (CANSim) with the following main

feature set and use it to quantify the performance of large

and diverse NoCs with state-of-the-art synchronous and asyn-

chronous routers. (i) CANSim supports event-level simulation

of each router stage for accurate modeling of router oper-

ations. (ii) Each router in the NoC can have separate timing

constraints. This feature allows the modeling of heterogeneous

NoCs. (iii) Support for variability in the timing path allows

for modeling data-dependent delays. (iv) Complex NoCs,

including heterarchical NoCs, can be specified in the form of

a graph. (v) CANSim can generate various synthetic traffic

patterns and supports dependency-driven real-world bench-

marks. (vi) Activity tracking to create power and power-gating

reports. (vii) CANSim is verified against synthesis models at

both no-load conditions and saturating conditions.

Key findings from the NoCs comparison include: (i) asyn-

chronous NoCs have about 10% lower average packet latency

at no-load conditions; (ii) they saturate 20% earlier under spe-

cific traffic patterns; (iii) they display consistently lower aver-

age packet latency across all injection rates for bitrev, shuffle,

and transpose patterns; (iv) asynchronous NoCs mitigate the

latency increase due to complex routing by about 23%; (v)

under uniform traffic, both synchronous and asynchronous

hierarchical NoCs show similar latencies; (vi) in GALS NoCs,

asynchronous versions are 36% faster for uniform traffic; (vii)

under PARSEC traffic, asynchronous NoCs are 8% faster and

consume 52% less power; (viii) despite process variation,

they maintain a 15% speed advantage; (ix) both NoC types

reduce latency by 8% (synchronous) and 14% (asynchronous)

respectively with PARSEC traffic; (x) asynchronous GALS

NoCs are 20% faster than their synchronous counterparts

under PARSEC traffic.

On average, asynchronous NoCs use less power and deliver

packets faster than their synchronous counterpart, and the

performance can be quantified with CANSim.

II. BACKGROUND

NoCs are used to establish communication between differ-

ent IPs in a system. Routers are linked together in various

topologies using wires to construct an NoC. The following

are essential aspects of synchronous and asynchronous that

affect NoC behavior.

A router receives, buffers, and sends packetized data be-

tween input and output ports. The output port selection is

based on destination and routing algorithm. Fig. 1 shows

submodules: buffer stores data temporarily, Input Queuing

(IQ) receives packets, Route Compute (RC) computes output

port, Virtual Channels (VC) handle multiple packets, Virtual

Channel Allocator (VCA) selects VC for transmission, Switch

Allocator (SA) allocates crossbar to selected VCs. Balanced

pipeline stages are formed by fusing adjacent modules, trig-

gered by a clock signal.

A. Synchronous vs. Asynchronous Router

R
e

g
is

te
r

Connections from other

input ports

Input Queuing

Logic

Route

Compute

Virtual

Channel

Allocator

Switch

Allocator

Input Buffer

X
crossbar

Output

port

Input

port

Connections to

other output

ports

Clock

Fig. 1. Submodules of a synchronous router controlled by clock signal.

R
e

g
is

te
r

Connections from other

input ports

Input Queuing

Logic

Route

Compute

Virtual

Channel

Allocator

Asynchronous

Arbiter

Input Buffer

X
crossbar

Output

 port

Input

port

Connections to

other output

ports

Handshake

Controller

Handshake

Controller

Handshake

Controller

Handshake

Controller

Handshake

Controller

P
re

v
io

u
s

R
o

u
te

r

Next

Router

1
2

3

4

Fig. 2. Asynchronous router controlled by handshake controllers.

Fig. 2 depicts an asynchronous router with its submodules

and control logic, resembling synchronous designs. The cen-

tral component, the Asynchronous Arbiter (ASA), facilitates

crossbar access on a First Come First Serve (FCFS) basis.

The ASA’s main function is to arbitrate requests arriving

simultaneously to the same output port. To enable operation

in the submodules, handshake controllers are employed in

asynchronous routers. When a submodule completes process-

ing and needs to transmit signals to the next one, it requests

the next stage’s availability through its Handshake Controller

(HC). In Fig. 2, after input queuing is done, the IQ sends

a request 1 to its HC to proceed. The HC of IQ forwards

this request 2 to the VC’s HC. If VC is currently idle, its

HC acknowledges the request 3 , which is then passed back

to IQ’s HC 4 , indicating that IQ is available for processing

the subsequent request. This implementation allows for delay-

insensitive, clock-free operation in asynchronous routers. Ad-

ditionally, when implementing an asynchronous router, adja-

cent submodules may be combined based on distinct timing

paths, reducing the number of handshake controllers and

forming the stages of the asynchronous pipeline.

B. Asynchronous communication and complex networks

(a) (b)

level 0

level 1

Fig. 3. (a) Simple Mesh Topology (b) A complex topology with two levels

Asynchronous communication between components re-

quires handshaking protocols and data-encoding schemes due

to the absence of a clock signal. In state-of-the-art asyn-

chronous routers, transition signaling is used for handshaking,

ensuring a single toggle of each control signal, resulting in

only one round trip latency per transaction. For data encoding,

a single-rail bundled-data transfer scheme is employed, where

binary-encoded data is transmitted using additional request

and acknowledgment wires alongside data wires [4].

Regarding complex networks, Fig. 3a illustrates a simple

mesh network topology with routers arranged in a 2D array

connected by links. However, for communication between

numerous heterogeneous components, this topology may not

scale efficiently. To address this, additional routers and links

can be introduced to create alternate paths for data trans-

mission. Fig. 3b demonstrates an example of a hierarchical

network with two levels of routers. Comparisons between

synchronous and asynchronous routers in such NoCs are yet

to be explored due to the lack of tool support.

III. SIMULATION FRAMEWORK

In this work, the goal of the simulation framework is to

model the synchronous and asynchronous routers at the event

level. This event-level simulation helps to model the functional

and timing aspects of the NoC closely. Further, the topology

of the NoC can be specified as a directed graph which allows

for flexibility in the NoC definition.

A. Simulation precision and speed

Synchronous NoCs operate based on clock edges, measur-

ing delays in clock cycles. In contrast, asynchronous NoCs use

the wall clock, measured in multiples of the smallest unit of

time known as a tick (e.g., ps or ns). In CANSim, event queues

are checked every tick, and matured events are executed

while new events are added based on the current events. The

simulation precision can be adjusted by using a smaller tick

size, like 0.001 ns instead of 0.1 ns, at the cost of longer

simulation time. Running a simulation for 1 million ticks takes

approximately 8 seconds on a modern computer, and batch

processing can leverage parallel processing within the same

executable. All timing parameters in the configuration file are

specified in ticks.

B. High level design of CANSim

(a) High level design of CANSim

AMT
Power

Gating Model

Orion 3

BookSim 2*

Netrace

HANSim

Configuration

File

Traces

Topology File

Inputs
Latency &

Throughput

Power

Power Gating

Report

Outputs

Topology File

Allocation policies

Network size Number of virtual channel Buffer size

Routing policy Individual router delays

Standard deviations in per stage delays

Synthetic workload specification Trace workload specification

Tick granularity

Gating parameters

Arbitration parameters

(b) Configuration File

Orion Parameters

Fig. 4. Modules of CANSim along with configuration file.

Fig. 4a illustrates the modules involved in CANSim’s op-

eration. The simulation starts by ingesting a configuration file

(shown in Fig. 4b) containing parameters described in detail in

[6]. CANSim then creates the network topology based on the

specified Topology file using BookSim’s [7] network topology

model for typical mesh NoCs. Traffic can be synthetic or

traced, injected into the network either from the configuration

file or via Netrace [8] module. The Asynchronous Model &

Timing (AMT) module initializes the network and creates

router models. Orion 3 [9] module reads the technology file,

monitoring router configuration and activity during the simu-

lation. For synchronous NoCs, Orion 3 directly reports static

and dynamic energy components. For asynchronous NoCs,

the same module generates activity reports used to determine

energy consumption. The power-gating module has visibility

into each router, allowing it to set routers’ states (active, idle,

or gated) during runtime according to the configuration file’s

parameters. At the end of the simulation, CANSim reports

packet and flit latency and throughput, generates power and

area reports, and provides power-gating reports, including

router gating duration and times based on the break-even time.

C. Asynchronous router in CANSim

Credit
Queuing/

Routing

VC

Allocation

Switch

Allocation

Crossbar

Traversal

AMT

Event Queues

Router Model

Power Gating Model Orion 3

Fig. 5. Interaction of router model with other modules in CANSim

Fig. 5 depicts a single router within CANSim and its

interactions with other models. The hollow arrows in Fig.

5b represent the flow of flit data. In CANSim, each router

in the NoC can be individually addressed and set to either

synchronous or asynchronous operation modes. Based on the

configuration file, CANSim models events within the router

as described in Section II. These submodules are organized

into different pipeline stages according to the router’s timing,

enabling the modeling of routers with various pipeline stages

while preserving all functional aspects.

D. Additonal features of asynchronous router model

1) Power-gating

CANSim implements a non-blocking power-gating

model [10] for routers in NoCs. This model wakes up routers

within two hops of the flit path if the router holding the flit

is already gated, based on the routing function through the

intermediate router. The wake-up process occurs before the

flit reaches the gated router. The break-even time, calculated

to justify the energy overhead of gating, is a parameter in

the base configuration file. CANSim calculates the total

gated duration per router, considering the break-even time,

and derives the energy overhead due to gating based on the

number of times the router was gated.

2) Asynchronous Arbiter

In NoCs with asynchronous routers, the crossbar forwards

input to the output on a first-come-first-served basis. The

Asynchronous Arbiter (ASA) allocates the crossbar when two

requests are present. Simultaneous arrival of two requests at

ASA can lead to metastability, where the decision process

for servicing the requests takes an arbitrary amount of time.

The time to resolve metastability is given by the formula

τ × ln(Tw

δ
), where τ and Tw depend on the circuit imple-

mentation [11]. CANSim includes a model to account for this

metastability but focuses on the discussed model in this work.

IV. VERIFICATION

To ensure the trustworthiness of simulator models, ver-

ification of functionality is crucial. CANSim’s accuracy is

confirmed by matching its output with synthesis models at all

injection ranges. The study compares a 4×4 2D mesh network

using CANSim against the Transition-Signaling Bundled-

Data Lightweight Asynchronous router (TaBuLA) and its

synchronous counterpart [2]. The routers’ details are given in

TABLE I
SYNTHESIS DATA FOR STATE-OF-THE-ART ASYNCHRONOUS AND

SYNCHRONOUS ROUTER

TaBuLA (Async) xpipes (Sync)

Head Latency (ps) 1165 943

Payload Latency (ps) 486 943

Link Latency (ps) (for 1mm) 414 943

Area 12433 14266

Energy per flit (pJ) 3.88 4.69

Table I. To verify CANSim, synchronous and asynchronous

4×4 2D mesh NoCs are constructed and simulated. The

results are compared against synthesis results for injection

rates ranging from 100 to 700 Mfilt/Port/sec, with a packet size

of 3 flits. Fig. 6 demonstrates that the deviation of Async and

Sync NoCs modeled by CANSim, compared to AsyncRef and

SyncRef from [2], varies by less than ∼4% across all ranges,

from no-load conditions to saturation points. These results

indicate that CANSim accurately models both synchronous

and asynchronous routers, ensuring precision and reliability.

0

50

100

150

200

250

300

350

100 200 300 400 500 600 700

A
v

g
 P

a
ck

et
 L

a
te

n
cy

 (
n

s)

Flit Injection Rate [Mflit/Port/sec]

Async Sync AsyncRef SyncRef

Fig. 6. Comparison of packet latency reported by CANSim (Async and Sync)
and synthesis results (ASyncRef and SyncRef)

V. EXPERIMENTAL SETUP

CANSim allows for a vast range of comparisons between

synchronous and asynchronous NoCs. This paper limits the

discussion to the following NoC configurations and traffic.

We use the state-of-the-art asynchronous router TaBuLA and

its synchronous counterpart xpipes to represent asynchronous

and synchronous routers, respectively. For more details on the

routers, refer Section IV and [2]. The default NoC size in this

work is 8×8 with Mesh topology. The routing algorithm used

is DOR XY. The packet size is three flits, while the buffer is

four flits deep. The routers use a wormhole switching scheme,

and the packets are injected at a rate of 100MFlits/port/sec to

1000MFlits/port/router.

VI. RESULTS

The results in this section are organized based on topology.

Section VI-A shows the comparison for planar topologies

while Section VI-B and Section VI-C show results for large

and complex NoCs - Hierarchical NoCs and GALS NoCs,

respectively.

A. Planar NoC

1) Synthetic Traffic

In the development of a general-purpose 8x8 NoC, we

have utilized synthetic benchmarks with seven diverse traffic

patterns—bitcomp, neighbor, tornado, uniform, bitrev, shuffle,

and transpose (Fig. 7 and Fig. 8) to test its capabilities. In

patterns like bitcomp, neighbor, and tornado, asynchronous

NoC outperforms synchronous NoC in terms of no-load

latency, registering about 5-10% faster speeds. However, it

saturates earlier due to increased router latency or switch

contention. The uniform traffic pattern, which ensures a bal-

anced load, shows asynchronous NoC with approximately 7%

0

10

20

30

40

50

60

A
v

g
.
P

a
ck

et
 L

a
te

n
cy

 (
n

s)

Flit Injection Rate [MFlits/router/sec]

bitcomp Sync neighbor Sync tornado Sync uniform Sync

bitcomp Async neighbor Async tornado Async uniform Async

Fig. 7. Operational region for bitcomp, neighbor, tornado and uniform traffic.

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300

A
v

g
.
P

a
ck

et
 L

a
te

n
cy

 (
n

s)

Flit Injection Rate [MFlits/router/sec]

bitrev Sync shuffle Sync transpose Sync

bitrev Async shuffle Async transpose Async

Fig. 8. Operational region for bitrev, shuffle and transpose traffic.

lower latency, but it also hits the saturation point 5% earlier

than synchronous NoC. In bitrev traffic, asynchronous NoC

excels, with a 5% faster no-load latency and 10% higher

saturation injection rate due to reduced switch contention.

Similarly, in the shuffle pattern, asynchronous NoC is around

7% faster, maintaining packet latency near saturation due

to its directional data flow. Transpose traffic, which causes

a network bisection bottleneck, surprisingly benefits asyn-

chronous NoC. Despite an imbalanced workload, it achieves

an impressive 35% higher saturation injection rate, courtesy

of lesser switch contention. To sum up, asynchronous NoCs

surpass synchronous NoCs in no-load latency across all pat-

terns and exhibit higher saturation injection rates for bitrev

and transpose patterns, even under unbalanced workloads.

2) Routing Policy and Packet Size

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

A
v

g
 P

a
ck

et
 L

a
te

n
cy

 (
n

s)

Flit Injection Rate [MFlits/router/sec]

A_dor S_dor A_min_adapt S_min_adapt
A_planar_adapt S_planar_adapt A1 A5
A9 S1 S5 S9

Fig. 9. Latency curve for synchronous(S) and asynchronous(A) NoCs with
different routing algorithms and packet size for uniform traffic

Routing algorithms can range from simple static policies

like DOR XY to complex adaptive ones like planar adapt,

and their hardware implementation creates different timing

paths [6]. As shown in Fig. 9, with asynchronous routers, the

added delay only affects the head flit, reducing the latency

increase due to adaptive routing by about 23% compared to

synchronous routers, where changes in routing complexity

directly impact the cycle time.

Our simulator’s capability to support various packet sizes

provides further insights. Notably, the head flit latency and

body flit latency in an asynchronous router differ, unlike in

state-of-the-art synchronous routers. Consequently, the end-to-

end latency varies with the number of flits per packet, as does

the saturation injection rate. For instance, this rate decreases

by 50% for nine flit packets compared to one flit packet,

and the latency gap between synchronous and asynchronous

routers narrows as the number of flits per packet increases.

3) PARSEC Traffic

0

10

20

30

40

50

P
a

ck
et

 L
a

te
n

cy

(n
s)

A S

0

0.2

0.4

0.6

N
o

rm
a

li
ze

d

P
o

w
er

0

0.2

0.4

0.6

0.8

1

F
li

t
In

je
ct

io
n

R
a

te

[M
F

li
ts

/r
o

u
te

r/
s

ec
]

Fig. 10. Top: Average packet latency for PARSEC applications in asyn-
chronous (A) and synchronous (S) NoCs. Middle: Average flit injection
rate of PARSEC applications. Bottom: Relative power of asynchronous NoC
compared to synchronous NoC for PARSEC applications.

Synthetic benchmarks suggest that asynchronous NoCs per-

form better than synchronous ones in specific scenarios based

on traffic patterns and injection rates, prompting an inves-

tigation of their performance with real-world traffic. Using

netrace to inject packets from PARSEC applications, we see

in Fig. 10 that asynchronous NoC’s latency is about 8% lower

than synchronous NoC’s. Notably, some applications, like

bodytrack, show higher average packet latency than synthetic

traffic patterns despite operating near no-load conditions,

underscoring the utility of CANSim for such analysis. Also

evident is that the asynchronous NoC uses around 52% less

power, primarily due to clockless operation, positioning it as

an advantageous choice for real-world traffic handling.

4) PARSEC Gating

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

3
2

5

3
5

0

3
7

5

4
0

0

4
2

5

4
5

0

4
7

5

5
0

0

5
2

5

5
5

0

5
7

5

N
o

rm
a

li
ze

d
 P

o
w

e
r

Flit Injection Rate [MFlits/router/sec]

Oracular GP2 GP4 GP6 GP8

GP10 GP12 GP14 GP16

Fig. 11. Normalized power of NoCs with Oracular and basic power-gating
policy(GP) against asynchronous NoC without power-gating

80

85

90

95

100

P
er

ce
n

ta
g

e

Static Power Reduction Efficiency

Fig. 12. Percentage power reduction in static power from power-gating
asynchronous NoC for PARSEC applications and relative efficiency of the
basic gating policy against Oracular policy

Exploring power-saving methods like power-gating in asyn-

chronous NoCs is valuable, despite their clockless operation

and dynamic power dominance when fully utilized [2], [12].

Under PARSEC applications, approximately 60% of power is

static due to low injection rates, creating a scope for power

conservation. Using the ‘oracular’ power-gating technique,

CANSim helps pinpoint times for potential energy saving,

when routers aren’t routing packets for longer than the break-

even threshold. We also evaluate a ‘basic’ power-gating policy

(GP), power-gating the router after a period of inactivity, with

the gating-threshold tailored to the application-NoC pair and

a 16 ns break-even time [12]. As shown in Fig. 11, power-

gating can result in around 60% power reduction for low-

traffic asynchronous NoCs, suggesting a benefit in applying

these techniques. However, this must be done cautiously as

basic policy (GP) might increase power consumption at high

injection rates. In Fig. 12, a ‘basic’ power-gating policy (GP4)

with a 4ns gating-threshold demonstrates around 90% static

power savings due to low injection rates while maintaining

nearly 95% power-saving efficiency compared to the oracular

policy.

5) Process Variation

CANSim can simulate delay changes caused by process

variation, common in chip fabrication. Asynchronous NoCs

better handle these variations, as they don’t need to match the

slowest speed like synchronous NoCs. Fig. 13 represents such

NoCs, each quadrant with varying subcomponent latencies due

to process variation. Quadrants of 8x8 asynchronous NoCs

(A1, A2, A3, A4) illustrate how routers in fast quadrants

operate 500ps faster, while those in slow quadrants are 500ps

slower. A synchronous NoC (S) operates 500ps slower overall

due to a shared clock. Studying these variations, as shown

in Fig. 13 for PARSEC programs, reveals their impact on

application performance. Asynchronous NoCs, despite being

affected by process variation, are about 15% faster than their

synchronous counterparts.

typicalfast

slowtypical

A1

typical

fast

slow

typical typical fast

slow typical typical fast

slow typical

A2 A3 A4

0
10
20
30
40
50
60

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy

(n
s)

A1 A2 A3 A4 S

Fig. 13. End to end flit latency reported by HANSim for NoC Variations of
AsyncMesh with each quadrant consisting of 4×4 routers. Each quadrant has
different subcomponent latencies.

B. Hierarchical NoC

As NoC scales, the added links and routers can complicate

the topology, increasing latency in asynchronous routers and

reducing the latency advantage of clockless operation with

longer link length [4], [13]–[16]. Fig. 14 shows a hierarchical

NoC to illustrate this, with a 15x15 mesh at level 0 and

a 3x3 mesh at level 1, effectively reducing the network

diameter from 28 to 14 for a minimal area overhead. For

larger NoCs, traffic pattern typically falls between uniform and

nonuniform [14]. Fig. 14 compares the latency of planar and

level 1

level 0

Fig. 14. Hierarchical NoC with two levels

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy

(n
s)

Flit Injection Rate [MFlits/router/sec]

A_U S_U A_H_U S_H_U

A_N S_N A_H_N S_H_N

Fig. 15. Latency curve comparing hierarchical and planar NoCs with
synchronous and asynchronous routers

0

10

20

30

40

50

60

A
v

er
a

g
e

P
a

ck
et

 L
a

te
n

cy

(n
s)

A S A_H S_H

Fig. 16. Comparison of latency for PARSEC applications on planar and
hierarchical NoCs

hierarchical NoCs, synchronous (S/S H) and asynchronous

(A/A H), under uniform (U) and nonuniform (N) traffic.

Hierarchical topology reduces packet latency by around 14%

for nonuniform traffic, and 27% for uniform traffic at no-load

injection rate. However, latency increases beyond planar NoCs

at around 30 MFlits/port/sec due to link saturation. Both syn-

chronous and asynchronous hierarchical NoCs exhibit similar

average flit latencies, suggesting the best topology and router

choice depends on traffic patterns and injection rates (Fig. 15).

Real-world traffic comparison (Fig. 16) shows asynchronous

hierarchical NoCs having the least latency, though the gap with

synchronous hierarchical NoC is just about 4%. Hierarchical

NoCs generally reduce latency by around 15% compared to

planar NoCs.

C. GALS NoC

Globally Asynchronous, Locally Synchronous (GALS) ar-

chitectures have garnered attention for integrating numerous

computational units while decoupling their operations [2].

GALS systems feature islands of synchronicity, but the is-

lands operate asynchronously [1], [2], [17]. Fig. 17 depicts a

GALS-based hierarchical NoC, with 5x5 islands operating at

half the speed of asynchronous (A GALS) and synchronous

(S GALS) routers. In A GALS, clockless operation obviates

the need for equalizing performance across pipelines, unlike

S GALS that requires inter-domain synchronization, adding

latency [1], [18]–[21].

Fig 11 compares A GALs and S GALS under uniform and

nonuniform traffic, showing S GALS performance is around

level 1

level 0

Fig. 17. Hierarchical GALS NoC topology with green routers operating at
half the rated speed

0
10
20
30
40
50
60
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

A
v

g
 P

a
ck

et
 L

a
te

n
cy

(n
s)

Flit Injection Rate [MFlits/router/sec]

A_HGALS_u S_HGALS_u A_HGALS_n S_HGALS_n

Fig. 18. Latency curve for synchronous and asynchronous hierarchical GALS
NoC

0

20

40

60

80

100

A
v

g
.
P

a
ck

et
 L

a
te

n
cy

(n
s)

A_H_GALS S_H_GALS

Fig. 19. Packet latency for PARSEC application in synchronous and asyn-
chronous hierarchical GALS NoC

30-36% lower due to synchronization. Similarly, under PAR-

SEC traffic, A GALS is roughly 20% faster than S GALS

on average, though the benefits vary by application (Fig. 19),

highlighting the need for a tool like CANSim.

VII. RELATED WORKS

In heterogeneous NoCs simulation, HNOCS [22], the first

asynchronous simulator, has significant limitations, including

inability to simulate real traffic and model data-dependent

router delays. PANE [5] addressed these issues but is impracti-

cally slow due to its use of Inter-Process Communication (IPC)

[23]. ANSim [24] improves upon PANE but can’t simulate

complex networks. In the hierarchical NoC domain, research

quantified the benefits of synchronous hierarchical NoC for

chip multiprocessors [14], [15]. For GALS systems using

asynchronous routers, automated synthesis tool flow was pre-

sented [2], and a non-blocking power-gating mechanism was

proposed for synchronous routers [10]. Until now, evaluating

mixed synchronous-asynchronous networks was hampered by

a lack of tool support. Our work enables such evaluation and

informs essential design decisions.

VIII. CONCLUSION

Adopting asynchronous routers in large system design has

been lagging due to the inability to quantify the performance

benefits compared to a synchronous router at the early de-

sign stage. We present CANSim, a fast and accurate tool

for comparing complex synchronous and asynchronous NoCs

with numerous routers to fill this void. CANSim is verified

against synthesis models at both the network’s no-load and

saturating conditions. CANSim supports both synthetic and

real-world benchmarks. With CANSim, we compare various

large and complex NoCs with state-of-the-art synchronous

and asynchronous routers and identify regions of operation

where synchronous NoCs and asynchronous NoCs provide

lower latency. We observe that using asynchronous routers

in NoCs can have latency benefits up to 36% and power

benefits up to 52% compared to similar synchronous NoC

designs. The CANSim simulator used in this work is available

at https://github.com/TomGlint/CANSim

REFERENCES

[1] A. Ghiribaldi et al., “A transition-signaling bundled data noc switch
architecture for cost-effective gals multicore systems,” in DATE. EDA
Consortium, 2013, pp. 332–337.

[2] D. Bertozzi et al., “Cost-effective and flexible asynchronous interconnect
technology for gals systems,” IEEE Micro, 2020.

[3] M. Imai et al., “The synchronous vs. asynchronous noc routers: an
apple-to-apple comparison between synchronous and transition signaling
asynchronous designs,” in NOCS. IEEE, 2016, pp. 1–8.

[4] W. Jiang et al., “An asynchronous noc router in a 14nm finfet library:
comparison to an industrial synchronous counterpart,” in DATE. IEEE,
2017, pp. 732–733.

[5] S. N. Ved et al., “Pane: Pluggable asynchronous network-on-chip sim-
ulator,” ACM Journal on Emerging Technologies in Computing Systems

(JETC), vol. 15, no. 1, pp. 1–27, 2019.
[6] W. J. Dally et al., Principles and practices of interconnection networks.

Elsevier, 2004.
[7] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip

simulator,” in ISPASS. IEEE, 2013, pp. 86–96.
[8] J. Hestness et al., “Netrace: dependency-driven trace-based network-on-

chip simulation,” in Proceedings of the Third International Workshop

on Network on Chip Architectures. ACM, 2010, pp. 31–36.
[9] A. B. Kahng et al., “Orion3.0: A comprehensive noc router estimation

tool,” IEEE Embedded Systems Letters, vol. 7, no. 2, pp. 41–45, 2015.
[10] L. Chen et al., “Power punch: Towards non-blocking power-gating of

noc routers,” in HPCA. IEEE, 2015, pp. 378–389.
[11] L. R. Marino, “General theory of metastable operation,” IEEE Transac-

tions on Computers, vol. 100, no. 2, pp. 107–115, 1981.
[12] N. Nasirian et al., “Traffic-aware power-gating scheme for network-on-

chip routers,” in 2016 IEEE Dallas Circuits and Systems Conference

(DCAS). IEEE, 2016, pp. 1–4.
[13] D. Matos et al., “Floorplan-aware hierarchical noc topology with gals

interfaces,” in 2012 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2012, pp. 652–655.
[14] R. Das et al., “Design and evaluation of a hierarchical on-chip inter-

connect for next-generation cmps,” in 2009 IEEE 15th International

Symposium on High Performance Computer Architecture. Ieee, 2009,
pp. 175–186.

[15] J. Yin et al., “Modular routing design for chiplet-based systems,” in
ISCA. IEEE, 2018, pp. 726–738.

[16] C. J. Alpert et al., “Buffer insertion with accurate gate and interconnect
delay computation,” in DAC, 1999, pp. 479–484.

[17] M. Krstic et al., “Globally asynchronous, locally synchronous circuits:
Overview and outlook,” IEEE Design & Test of computers, vol. 24,
no. 5, pp. 430–441, 2007.

[18] R. Dobkin et al., “Data synchronization issues in gals socs,” in 10th

International Symposium on Asynchronous Circuits and Systems, 2004.

Proceedings., 2004, pp. 170–179.
[19] F. Burns et al., “Gals synthesis and verification for xmas models,” in

DATE, 2015, pp. 1419–1424.
[20] I. M. Panades et al., “Bi-synchronous fifo for synchronous circuit

communication well suited for network-on-chip in gals architectures,”
in NOCS’07. IEEE, 2007, pp. 83–94.

[21] D. Ludovici et al., “Mesochronous noc technology for power-efficient
gals mpsocs,” in Proceedings of the Fifth International Workshop on

Interconnection Network Architecture: On-Chip, Multi-Chip, 2011, pp.
27–30.

[22] Y. Ben-Itzhak et al., “Hnocs: modular open-source simulator for hetero-
geneous nocs,” in 2012 international conference on embedded computer

systems (SAMOS). IEEE, 2012, pp. 51–57.
[23] A. Venkataraman et al., “Evaluation of inter-process communication

mechanisms,” Architecture, vol. 86, p. 64, 2015.
[24] T. Glint et al., “Ansim: A fast and versatile asynchronous network-

on-chip simulator,” in 2020 IEEE 38th International Conference on

Computer Design (ICCD), 2020, pp. 619–622.

https://github.com/TomGlint/CANSim

	Introduction
	Background
	Synchronous vs. Asynchronous Router
	Asynchronous communication and complex networks

	Simulation Framework
	Simulation precision and speed
	High level design of CANSim
	Asynchronous router in CANSim
	Additonal features of asynchronous router model
	Power-gating
	Asynchronous Arbiter

	Verification
	Experimental Setup
	Results
	Planar NoC
	Synthetic Traffic
	Routing Policy and Packet Size
	PARSEC Traffic
	PARSEC Gating
	Process Variation

	Hierarchical NoC
	GALS NoC

	Related Works
	Conclusion
	References

