
Micro-Pages: Increasing DRAM Efficiency
with Locality-Aware Data Placement

Kshitij Sudan Niladrish Chatterjee David Nellans Manu Awasthi
Rajeev Balasubramonian Al Davis

School of Computing
University of Utah, Salt Lake City

{kshitij, nil, dnellans, manua, rajeev, ald}@cs.utah.edu

Abstract
Power consumption and DRAM latencies are serious concerns
in modern chip-multiprocessor (CMP or multi-core) based com-
pute systems. The management of the DRAM row buffer can sig-
nificantly impact both power consumption and latency. Modern
DRAM systems read data from cell arrays and populate a row
buffer as large as 8 KB on a memory request. But only a small
fraction of these bits are ever returned back to the CPU. This ends
up wasting energy and time to read (and subsequently write back)
bits which are used rarely. Traditionally, an open-page policy has
been used for uni-processor systems and it has worked well be-
cause of spatial and temporal locality in the access stream. In fu-
ture multi-core processors, the possibly independent access streams
of each core are interleaved, thus destroying the available locality
and significantly under-utilizing the contents of the row buffer. In
this work, we attempt to improve row-buffer utilization for future
multi-core systems.

The schemes presented here are motivated by our observations
that a large number of accesses within heavily accessed OS pages
are to small, contiguous “chunks” of cache blocks. Thus, the co-
location of chunks (from different OS pages) in a row-buffer will
improve the overall utilization of the row buffer contents, and con-
sequently reduce memory energy consumption and access time.
Such co-location can be achieved in many ways, notably involv-
ing a reduction in OS page size and software or hardware assisted
migration of data within DRAM. We explore these mechanisms
and discuss the trade-offs involved along with energy and perfor-
mance improvements from each scheme. On average, for applica-
tions with room for improvement, our best performing scheme in-
creases performance by 9% (max. 18%) and reduces memory en-
ergy consumption by 15% (max. 70%).

Categories and Subject Descriptors B.3.2 [Memory Structures]:
Design Styles–Primary Memory

General Terms Design, Performance, Experimentation

Keywords DRAM Row-Buffer Management, Data Placement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright © 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

1. Introduction
Main memory has always been a major performance and power
bottleneck for compute systems. The problem is exacerbated by
a recent combination of several factors - growing core counts for
CMPs [5], slow increase in pin count and pin bandwidth of DRAM
devices and microprocessors [28], and increasing clock frequen-
cies of cores and DRAM devices. Power consumed by memory has
increased substantially and datacenters now spend up to 30% of
the total power consumption of a blade (motherboard) in DRAM
memory alone [8]. Given the memory industry’s focus on cost-
per-bit and device density, power density in DRAM devices is also
problematic. Further, modern and future DRAM systems will see
a much smaller degree of locality in the access stream because re-
quests from many cores will be interleaved at a few memory con-
trollers. In systems that create memory pools shared by many pro-
cessors [37, 38], locality in the access stream is all but destroyed.

In this work, our focus is to attack the dual problems of increas-
ing power consumption and latency for DRAM devices. We pro-
pose schemes that operate within the parameters of existing DRAM
device architectures and JEDEC signaling protocols. Our approach
stems from the observation that accesses to heavily referenced OS
pages are clustered around a few cache blocks. This presents an
opportunity to co-locate these clusters from different OS pages in
a single row-buffer. This leads to a dense packing of heavily refer-
enced blocks in a few DRAM pages. The performance and power
improvements due to our schemes come from improved row-buffer
utilization that inevitably leads to reduced energy consumption and
access latencies for DRAM memory systems.

We propose the co-location of heavily accessed clusters of
cache blocks by controlling the address mapping of OS pages to
DIMMs/DRAM devices. We advance two schemes which modify
address mapping by employing software and hardware techniques.
The software technique relies on reducing the OS page size, while
the hardware method employs a new level of indirection for physi-
cal addresses allowing a highly flexible data mapping.

Our schemes can easily be implemented in the OS or the mem-
ory controller. Thus, the relative inflexibility of device architec-
tures and signaling standards does not preclude these innovations.
Furthermore, our mechanisms also fit nicely with prior work on
memory controller scheduling policies, thus allowing additive im-
provements. Compared to past work on address mapping [39, 59],
our schemes take a different approach to data mapping and are or-
thogonal to those advanced by prior work. This prior work on ad-
dress mapping aimed at reducing row-buffer conflict as much as
possible using cache-line or page interleaved mapping of data to
DRAM devices. It did not however address inefficiency in data ac-
cess from a row-buffer itself. If cache blocks within a page are ac-

219

Figure 1. Baseline DRAM Setup and Data Layout.

cessed such that only a few blocks are ever touched, none of these
prior schemes [39, 59], can improve row-buffer utilization. This
fact, coupled with the increasing row-buffer sizes in newer DRAM
devices, is the motivation for our proposals.

Of the signaling standards (JEDEC DDRx [30] and Ram-
bus [16]) prominently used today, we focus on the more popular
JEDEC-standard DDRx-based systems, and all our discussions for
the rest of the paper pertain to the same. The paper is organized as
follows. We briefly discuss the DRAM access mechanism in Sec-
tion 2 along with a baseline architecture and motivational results.
Our proposed schemes are described in Section 3 and evaluated in
Section 4. A summary of related work appears in Section 5 and
conclusions discussed in Section 6.

2. Background
In this section, we first describe the basic operation of DRAM
based memories and mapping of data to DRAM devices. This is
followed by results that motivate our approach.

2.1 DRAM Basics

Modern DDRx systems [29] are organized as modules (DIMMs),
composed of multiple devices, each of which is an individually
packaged integrated circuit. The DIMMs are connected to the mem-
ory controller via a data bus and other command and control net-
works (Figure 1). DRAM accesses are initiated by the CPU request-
ing a cache line worth of data in the event of last-level cache miss.
The request shows up at the memory controller which converts
the request into carefully orchestrated commands for DRAM ac-
cess. Modern memory controllers are also responsible for schedul-
ing memory requests according to policies designed to reduce ac-
cess times for a request. Using the physical address of the request,
the memory controller typically first selects the channel, then the
DIMM, and then a rank within a DIMM. Within a rank, DRAM
devices work in unison to return as many bits of data as the width
of the channel connecting the memory controller and the DIMM.

Each DRAM device is arranged as multiple banks of mats - a
grid-like array of cells. Each cell comprises of a transistor-capacitor
pair to store a bit of data. These cells are logically addressable with
a row and column address pair. Accesses within a device begin with
first selecting a bank and then a row. This reads an entire row of

bits (whose address is specified by the Row Access Strobe (RAS)
command) to per-bank sense amplifiers and latches that serve as the
row-buffer. Then a Column Access Strobe (CAS) command selects
a column from this buffer. The selected bits from each device are
then aggregated at the bank level and sent to the memory controller
over the data bus. A critical fact to note here is that once a RAS
command is issued, the row-buffer holds a large number of bits
that have been read from the DRAM cells. For the DDR2 memory
system that we model for our experiments, the number of bits in
a per-bank row-buffer is 64 K bits, which is typical of modern
memory configurations. To access a 64 byte cache line, a row-
buffer is activated and 64 K bits are read from the DRAM cells.
Therefore, less than 1% of data in a bank’s row-buffer is actually
used to service one access request.

On every access, a RAS activates wordlines in the relevant mats
and the contents of the cells in these rows are sensed by bitlines.
The values are saved in a set of latches (the row-buffer). These
actions are collectively referred to as the activation of the row
buffer. This read operation is a destructive process and data in
the row-buffer must be written back after the access is complete.
This write-back can be on the critical path of an access to a new
row. The activation of bitlines across several DRAM devices is
the biggest contributor to DRAM power. To reduce the delays and
energy involved in row buffer activation, the memory controller
adopts one of the following row buffer management policies:

• Open-page policy: Data in row-buffer is not written back after
the access is complete.

• Close-page policy: Data is written back immediately after the
access is complete.

The open-row policy is based on an optimistic assumption that
some accesses in the near future will be to this open page - this
amortizes the mat read energy and latency across multiple accesses.
State-of-the-art DRAM address mapping policies [39, 59] try to
map data such that there are as few row-buffer conflicts as possi-
ble. Page-interleaved schemes map contiguous physical addresses
to the same row in the same bank. This allows the open-page policy
to leverage spatial and temporal locality of accesses. Cache-line in-
terleaved mapping is used with multi-channel DRAM systems with
consecutive cache lines mapped to different rows/banks/channels to
allow maximum overlap in servicing requests.

On the other hand, the rationale behind close-page policy is
driven by the assumption that no subsequent accesses will be to the
same row. This is focused towards hiding the latency of write-back
when subsequent requests are to different rows and is best suited
for memory access streams that show little locality - like those in
systems with high processor counts.

Traditional uni-processor systems perform well with an open-
page policy since the memory request stream being generated fol-
lows temporal and spatial locality. This locality makes subsequent
requests more likely to be served by the open-page. However with
multi-core systems, the randomness of requests has made open-
page policy somewhat ineffective. This results in low row-buffer
utilization. This drop in row-buffer utilization (hit-rate) is quanti-
fied in Figure 2 for a few applications. We present results for 4
multi-threaded applications from the PARSEC [9] suite and one
multi-programmed workload mix of two applications each from
SPEC CPU2006 [24] and BioBench [4] suites (lbm, mcf, and fasta-
dna, mummer, respectively). Multi-threaded applications were first
run with a single thread on a 1-core system and then with four
threads on a 4-core CMP. Each application was run for 2 billion in-
structions, or the end of parallel-section, whichever occurred first.
Other simulation parameters are described in detail in Section 4.

We observed that the average utilization of row-buffers dropped
in 4-core CMP systems when compared to a 1-core system. For

220

Figure 2. Row-buffer Hit-Rates for 1 and 4-Core Configurations

multi-threaded applications, the average row-buffer utilization
dropped from nearly 30% in the 1-core setup to 18% for the 4-
core setup. For the 4 single-threaded benchmarks in the experiment
(lbm, mcf, fasta-dna, and mummer), the average utilization was
59% when each benchmark was run in isolation. It dropped to 7%
for the multi-programmed workload mix created from these same
applications. This points towards the urgent need to address this
problem since application performance is sensitive to DRAM ac-
cess latency, and DRAM power in modern server systems accounts
for nearly 30% of total system power [8].

Past work has focused on increasing energy efficiency by imple-
menting a power-aware memory allocation system in the OS [25],
decreasing the row-buffer size [60], interleaving data to reduce
row-buffer conflicts [39, 59], coalescing short idle periods between
requests to leverage power-saving states in modern DRAM de-
vices [26], and on scheduling requests at the memory controller
to reduce access latency and power consumption [21, 44, 45, 60,
62, 63].

In this work, we aim to increase the row-buffer hit rates by influ-
encing the placement of data blocks in DRAM - specifically, we co-
locate frequently accessed data in the same DRAM rows to reduce
access latency and power consumption. While application perfor-
mance has been shown to be sensitive to DRAM system configu-
ration [17] and mapping scheme [39, 59], our proposals improve
row-buffer utilization and work in conjunction with any mapping
or configuration. We show that the strength of our schemes lies in
their ability to tolerate random memory request streams, like those
generated by CMPs.

2.2 Baseline Memory Organization

For our simulation setup, we assumed a 32-bit system with 4 GB of
total main memory. The 4 GB DRAM memory capacity is spread
across 8 non-ECC, unbufferred DIMMs as depicted in Figure 1.
We use Micron MT47H64M8 [41] part as our DRAM device - this
is a 512 Mbit, x8 part. Further details about this DRAM device
and system set-up are summarized in Table 1 in Section 4. Each
row-buffer for this setup is 8 KB in size, and since there are
4 banks/device there are 4 row-buffers per DIMM. We model a
DDR2-800 memory system, with DRAM devices operating at 200
MHz, and a 64-bit wide data bus operating at 400 MHz. For a 64
byte sized cache line, it takes 8 clock edges to transfer a cache line
from the DIMMs to the memory controller.

Figure 3. Baseline DRAM Address Mapping

2.2.1 Baseline DRAM addressing

Using the typical OS page size of 4 KB, the baseline page-
interleaved data layout is as shown in Figure 3. Data from a page is
spread across memory such that it resides in the same DIMM,
same bank, and the same row. This mapping is similar to that
adopted by Intel 845G Memory Controller Hub for this configura-
tion [27, 29, 57], and affords simplicity in explaining our proposed
schemes. We now describe how the bits of a physical address are
interpreted by the DRAM system to map data across the storage
cells. For a 32 bit physical address (Figure 3), the low order 3 bits
are used as the byte address, bits 3 through 12 provide the column
address, bits 13 and 14 denote the bank, bits 15 through 28 provide
the row I.D, and the most significant 3 bits indicate the DIMM I.D.
An OS page therefore spans across all the devices on a DIMM, and
along the same row and bank in all the devices. For a 4 KB page
size, a row-buffer in a DIMM holds two entire OS pages, and each
device on the DIMM holds 512 bytes of that page’s data.

2.3 Motivational Results

An interesting observation for DRAM memory accesses at OS page
granularity is that for most applications, accesses in a given time
interval are clustered around few contiguous cache line sized blocks
in the most referenced OS pages. Figures 4 and 5 show this pattern
visually for a couple of SPEC CPU2006 applications. The X-axis
shows the sixty-four 64 byte cache blocks in a 4 KB OS page, and
the Z-axis shows the percent of total accesses to each block within
that page. The Y-axis plots the most frequently accessed OS pages
in sorted order.

We present data for pages that account for approximately 25%
of total DRAM requests served for a 2 billion instruction period.
These experiments were run with 32 KB, 2-way split L1 I and D-
cache, and 128 KB, 8-way L2 cache for a single core setup. To
make sure that results were not unduly influenced by configuration
parameters and not limited to certain applications, we varied all the
parameters and simulated different benchmark applications from
PARSEC, SPEC, NPB [7], and BioBench benchmark suites. We
varied the execution interval over various phases of the application
execution, and increased cache sizes and associativity to make sure
we reduced conflict misses. Figures 4 and 5 show 3D graphs for
only two representative experiments because the rest of the work-
loads exhibited similar patterns. The accesses were always clus-
tered around a few blocks in a page, and very few pages accounted
for most accesses in a given interval (less than 1% of OS pages
account for almost 1/4th of the total accesses in the 2 billion in-
struction interval; the exact figures for the shown benchmarks are:
sphinx3 - 0.1%, gemsFDTD - 0.2%).

These observations lead to the central theme of this work - co-
locating clusters of contiguous blocks with similar access counts,
from different OS pages, in a row-buffer to improve its utilization.

In principle, we can imagine taking individual cache blocks and
co-locating them in a row-buffer. However, such granularity would
be too fine to manage a DRAM memory system and the overheads
would be huge. For example, in a system with 64 B wide cache lines
and 4 GB of DRAM memory, there would be nearly 67 million

221

Figure 4. sphinx3

blocks to keep track of! To overcome these overheads, we instead
focus on dealing with clusters of contiguous cache blocks. We call
these clusters “micro-pages”.

3. Proposed Mechanisms
The common aspect of all our proposed innovations is the identi-
fication and subsequent co-location of frequently accessed micro-
pages in row-buffers to increase row-buffer hit rates. We discuss
two mechanisms to this effect - decreasing OS page size and per-
forming page migration for co-location, and hardware assisted mi-
gration of segments of a conventional OS page (hereafter referred
to as a micro-page). As explained in Sections 1 and 2, row-buffer
hit rates can be increased by populating a row-buffer with those
chunks of a page which are frequently accessed in the same win-
dow of execution. We call these chunks from different OS pages
“hot” micro-pages if they are frequently accessed during the same
execution epoch.

For all our schemes, we propose a common mechanism to
identify hot micro-pages at run-time. We introduce counters at
the memory controller that keep track of accesses to micro-pages
within different OS pages. For a 4 KB OS page size, 1 KB micro-
page size, and assuming application memory footprint in a 50
million cycle epoch to be 512 KB (in Section 4 we show that
footprint of hot micro-pages is actually lower than 512 KB for most
applications), the total number of such counters required is 512.
This is a small overhead in hardware and since the update of these
counters is not on the critical path while scheduling requests at
the memory controller, it does not introduce any latency overhead.
However, an associative look-up of these counters (for matching
micro-page number) can be energy inefficient. To mitigate this,
techniques like hash-based updating of counters can be adopted.
Since very few micro-pages are touched in an epoch, we expect the
probability of hash-collision to be small. If the memory footprint of
the application exceeds 512 KB, then some errors in the estimation
of hot micro-pages can be expected.

At the end of an epoch, an OS daemon inspects the counters and
the history from the preceding epoch to rank micro-pages as “hot”
based on their access counts. The daemon then selects the micro-
pages that are suitable candidates for migration. Subsequently, the
specifics of the proposed schemes take over the migrations and as-

Figure 5. gemsFDTD

sociated actions required to co-locate the hot micro-pages. By us-
ing the epoch based statistics collection, and evaluating hotness of
a page based on the preceding epoch’s history, this scheme implic-
itly uses both temporal and spatial locality of requests to identify
hot micro-pages. The counter values and the preceding epoch’s his-
tory are preserved for each process across a context switch. This
is a trivial modification to the OS’ context switching module that
saves and restores application context. It is critical to have such a
dynamic scheme so it can easily adapt to varying memory access
patterns. Huang et al. [25] describe how memory access patterns
are not only continuously changing within an application, but also
across context switches, thus necessitating a dynamically adaptive
scheme. By implementing this in software, we gain flexibility not
afforded by hardware implementations.

3.1 Proposal 1 - Reducing OS Page Size (ROPS)

In this section we first describe the basic idea of co-locating hot
micro-pages by reducing the OS page size. We then discuss the
need to create superpages from micro-pages to reduce bookeeping
overhead and mitigate the reduced TLB reach due to smaller page
size.

Basic Idea: In this scheme, our objective is to reduce the OS
page size such that frequently accessed contiguous blocks are clus-
tered together in the new reduced size page (a micro-page). We
then migrate hot micro-pages using DRAM copy to co-locate fre-
quently accessed micro-pages in the same row-buffer. The inno-
vation here is to make the OS’ Virtual Address (VA) to Physical
Address (PA) mapping cognizant of row-buffer utilization. This
is achieved by modifying the original mapping assigned by the
OS’ underlying physical memory allocation algorithm such that hot
pages are mapped to physical addresses that are co-located in the
same row-buffer. Every micro-page migration is accompanied by
an associated TLB shoot-down and change in its page table entry.

Baseline Operation: To understand the scheme in detail, let’s fol-
low the sequence of events from the first time some data is accessed
by an application. The application initially makes a request to the
OS to allocate some amount of space in the physical memory. This
request can be explicit via calls to malloc(), or implicit via com-
piler indicated reservation in the stack. The OS in turn assigns a

222

virtual to physical page mapping for this request by creating a new
page table entry. Subsequently, when the data is first accessed by
the application, a TLB miss fetches the appropriate entry from the
page table. The data is then either fetched from the disk into the ap-
propriate physical memory location via DMA copy, or the OS could
copy another page (copy-on-write), or allocate a new empty page.
An important point to note from the perspective of our schemes is
that in either of these three cases (data fetch from the disk, copy-
on-write, allocation of an empty frame), the page table is accessed.
We will discuss the relevance of this point shortly.

Overheads: In our scheme, we suggest a minor change to the
above sequence of events. We propose reducing the page size across
the entire system to 1 KB, and instead of allocating one page table
entry the first time the request is made to allocate physical mem-
ory, the OS creates four page table entries (each equal to page size
of 1 KB). We leverage the “reservation-based” [46, 53] allocation
approach for 1 KB base-pages, i.e., on first-touch, contiguous 1 KB
virtual pages are allocated to contiguous physical pages. This en-
sures that the overhead required to move from a 1 KB base-page
to a 4 KB superpage is only within the OS and does not require
DRAM page copy. These page table entries will therefore have con-
tiguous virtual and physical addresses and will ensure easy creation
of superpages later on. The negative effect of this change is that the
page table size will increase substantially, at most by 4X compared
to a page table for 4 KB page size. However, since we will be cre-
ating superpages for most of the 1 KB micro-pages later (this will
be discussed in more detail shortly), the page table size will shrink
back to a size similar to that for a baseline 4 KB OS page size. Note
that in our scheme, 4 KB pages would only result from superpage
creation and the modifications required to the page table have been
explored in the literature for superpage creation. The smaller page
size also impacts TLB coverage and TLB miss rate, but similar to
the discussion above, this impact is minimal if most 1 KB pages are
eventually coalesced into 4 KB pages.

The reason to choose 1 KB micro-page size was dictated by a
trade-off analysis between TLB coverage and a manageable micro-
page granularity. We performed experiments to determine the ben-
efit obtained by having a smaller page size and performance degra-
dation due to drop in TLB coverage. For almost all applications,
1 KB micro-page size offered a good trade-off.

Reserved Space: Besides the above change to the OS’ memory
allocator, we also reserve frames in the main memory that are never
assigned to any application (even the kernel is not mapped to these
frames). These reserved frames belong to the first 16 rows in each
bank of each DIMM and are used to co-locate hot micro-pages.
The total capacity reserved for our setup is 4 MB and is less than
0.5% of the total DRAM capacity. We later present results that
show most of the hot micro-pages can be accommodated in these
reserved frames.

Actions per Epoch: After the above described one-time actions
of this scheme, we identify “hot” micro-pages every epoch using
the OS daemon as described earlier. This daemon examines coun-
ters to determine the hot micro-pages that must be migrated. If
deemed necessary, hot micro-pages are subsequently migrated by
forcing a DRAM copy for each migrated micro-page. The OS’ page
table entries are also changed to reflect this. To mitigate the impact
of reduced TLB reach due to smaller page size, we create super-
pages. Every contiguous group of four 1 KB pages that do not con-
tain a migrated micro-page are promoted to a 4 KB superpage.

Thus the sequence of steps taken for co-locating the micro-
pages for this scheme are as follows:

• Look up the hardware counters in the memory controller and
designate micro-pages as “hot” by combining this information

with statistics for the previous epoch - performed by an OS
daemon described earlier.

• To co-locate hot micro-pages, force DRAM copies causing
migration of micro-pages. Then update the page table entries
to appropriate physical addresses for the migrated micro-pages.

• Finally, create as many superpages as possible.

Superpage Creation: The advantages that might be gained from
enabling the OS to allocate physical addresses at a finer granularity
may be offset by the penalty incurred due to reduced TLB reach.
To mitigate these effects of higher TLB misses we incorporate the
creation of superpages [46, 49]. Superpage creation [22, 46, 49, 52]
has been extensively studied in the past and we omit the details of
those mechanisms here. Note that in our scheme, superpages can
be created only with “cold” micro-pages since migrated hot micro-
pages leave a “hole” in the 4 KB contiguous virtual and physical
address spaces. Other restrictions for superpage creation are easily
dealt with as discussed next.

TLB Status Bits: We allocate contiguous physical addresses for
four 1 KB micro-pages that were contiguous in virtual address
space. This allows us to create superpages from a set of four
micro-pages which do not contain a hot micro-page that has been
migrated. When a superpage is created, a few factors need to be
taken into account, specifically the various status bits associated
with each entry in the TLB.

• The included base-pages must have identical protection and ac-
cess bits since the superpage entry in the TLB has only one field
for these bits. This is not a problem because large regions in
the virtual memory space typically have the same state of pro-
tection and access bits. This happens because programs usually
have large segments of densely populated virtual address spaces
with similar access and protection bits.

• Base-pages also share the dirty-bit when mapped to a super-
page. The dirty-bit for a superpage can be the logical OR of the
dirty-bits of the individual base-pages. A minor inefficiency is
introduced because an entire 4 KB page must be written back
even when only one micro-page is dirty.

• The processor must support a wide range of superpage sizes
(already common in modern processors), including having a
larger field for the physical page number.

Schemes proposed by Swanson et al. [52] and Fang et al. [22]
have also shown that it is possible to create superpages that are non-
contiguous in physical address space and unaligned. We mention
these schemes here but leave their incorporation as future work.

The major overheads experienced by the ROPS scheme arise
from two sources:

• DRAM copy of migrated pages and associated TLB shoot-
down, and page table modifications.

• Reduction in TLB coverage.

In Section 4, we show that DRAM migration overhead is not
large because on an average only a few new micro-pages are iden-
tified as hot every epoch and moved. As a result, the major over-
head of DRAM copy is relatively small. However, the next scheme
proposed below eliminates the above mentioned overheads and is
shown to perform better than ROPS. The performance difference is
not large however.

3.2 Proposal 2 - Hardware Assisted Migration (HAM)

This scheme introduces a new layer of translation between physical
addresses assigned by the OS (and stored in the page table while
allocating a new frame in main memory) - and those used by the

223

memory controller to access the DRAM devices. This translation
keeps track of the new physical addresses of the hot micro-pages
that are being migrated and allows migration without changing the
OS’ page size, or any page table entries. Since the OS page size is
not changed, there is no drop in TLB coverage.

Indirection: In this scheme we propose look-up of a table at the
memory controller to determine the new address if the data has
been migrated. We organize the table so it consumes acceptable en-
ergy and area and these design choices are described subsequently.
The address translation required by this scheme is usually not on
the critical path of accesses. Memory requests usually wait in the
memory controller queues for a long time before being serviced.
The above translation can begin when the request is queued and
the delay for translation can be easily hidden behind the long wait
time. The notion of introducing a new level of indirection has been
widely used in the past, for example, within memory controllers
to aggregate distributed locations in the memory [11]. More re-
cently, it has been used to control data placement in large last-level
caches [6, 13, 23].

Similar to the ROPS schemes, the OS daemon is responsible
for selecting hot micro-pages fit for co-location. Thereafter, this
scheme performs a DRAM copy of “hot” micro-pages. However,
instead of modifying the page table entries as in ROPS, this scheme
involves populating a “mapping table” (MT) in the memory con-
troller with mappings from the old to the new physical addresses
for each migrated page. Features of this scheme are now described
in more detail below.

Request Handling: When a request (with physical address as-
signed by the OS) arrives at the memory controller, it searches for
the address in the MT (using certain bits of the address as described
later). On a hit, the new address of the micro-page is used by the
memory controller to issue the appropriate commands to retrieve
the data from its new location - otherwise the original address is
used. The MT look-up happens the moment a request is added to
the memory controller queue and does not extend the critical path in
the common case because queuing delays at the memory controller
are substantial.

Micro-page Migration: Every epoch, micro-pages are rated and
selected for migration. Also, the first 16 rows in each bank are
reserved to hold the hot micro-pages. The OS’s VA to PA mapping
scheme is modified to make sure that no page gets mapped to these
reserved rows. The capacity lost due to this reservation (4 MB) is
less than 0.5% of the total DRAM capacity and in Section 4 we
show that this capacity is sufficient to hold almost all hot micro-
pages in a given epoch.

At the end of each epoch, hot micro-pages are moved to one
of the slots in the reserved rows. If a given micro-page is deemed
hot, and is already placed in the reserved row (from the previous
epoch), we do not move it. Otherwise, a slot in the reserved row
is made empty by first moving the now “cold” micro-page to its
original address. The new hot micro-page is then brought to this
empty slot. The original address of the cold page being replaced
is derived from the contents of the corresponding entry of the MT.
After the migration is complete, the MT is updated accordingly.
The design choice to not swap the cold and hot micro-pages and
allow “holes” was taken to reduce book-keeping overheads and
easily locate evicted cold blocks.

This migration also implies that the portion of the original row
from which a hot micro-page is migrated now has a “hole” in it.
This does not pose any correctness issue in terms of data look-up
for a migrated micro-page at its former location since an access
to a migrated address will be redirected to its new location by the
memory controller.

Mapping Table (MT): The mapping table contains the mapping
from the original OS assigned physical address to the new address
for each migrated micro-page. The size and organization of the
mapping table can significantly affect the energy spent in the ad-
dress translation process. We discuss the possible organizations for
the table in this subsection. As mentioned earlier, we reserve 16
rows of each bank in a DIMM to hold the hot micro-pages. The
reservation of these rows implies that the total number of slots
where a hot micro-page might be relocated is 4096 (8 DIMMS ∗
4 banks/DIMM ∗ 16 rows/bank ∗ 8 micro-page per row).

We design the MT as a banked fully-associative structure. The
MT has 4096 entries, one for each slot reserved for a hot micro-
page. Each entry stores the original physical address for the hot
micro-page resident in that slot. The entry is populated when the
micro-page is migrated. Since it takes 22 bits to identify each
1 KB micro-page in the 32-bit architecture, the MT requires a total
storage capacity of 11 KB.

On every memory request, the MT must be looked up to deter-
mine if the request must be re-directed to a reserved slot. The origi-
nal physical address must be compared against the addresses stored
in all 4096 entries. The entry number that flags a hit is then used
to construct the new address for the migrated micro-page. A couple
of optimizations can be attempted to reduce the energy overhead
of the associative search. First, we can restrict a hot micro-page to
only be migrated to a reserved row in the same DIMM. Thus, only
1/8th of the MT must be searched for each look-up. Such a banked
organization is assumed in our quantitative results. A second opti-
mization can set a bit in the migrated page’s TLB entry. The MT is
looked up only if this bit is set in the TLB entry corresponding to
that request. This optimization is left as future work.

When a micro-page must be copied back from a reserved row to
its original address, the MT is looked up with the ID (0 to 4095) of
the reserved location, and the micro-page is copied into the original
location saved in the corresponding MT entry.

4. Results
4.1 Methodology

Our detailed memory system simulator is built upon the Virtutech
Simics [2, 40] platform and important parameters of the simulated
system are shown in Table 1. Out-of-order timing is simulated us-
ing Simics’ sample-micro-arch module and the DRAM memory
sub-system is modeled in detail using a modified version of Sim-
ics’ trans-staller module. It closely follows the model described
by Gries in [41]. The memory controller (modeled in trans-staller)
keeps track of each DIMM and open rows in each bank. It sched-
ules the requests based on open-page and close-page policies. To
keep our memory controller model simple, we do not model opti-
mizations that do not directly affect our schemes, like finite queue
length, critical-word-first optimization, and support for prioritiz-
ing reads. Other major components of Gries’ model that we adopt
for our platform are: the bus model, DIMM and device models,
and most importantly, simultaneous pipelined processing of mul-
tiple requests. The last component allows hiding activation and
pre-charge latency using pipelined interface of DRAM devices. We
model the CPU to allow non-blocking load/store execution to sup-
port overlapped processing.

DRAM address mapping parameters for our platform were
adopted from the DRAMSim framework [57]. We implemented
single-channel basic SDRAM mapping, as found in user-upgrade-
able memory systems, and it is similar to Intel 845G chipsets’
DDR SDRAM mapping [27]. Some platform specific implementa-
tion suggestions were taken from the VASA framework [56]. Our
DRAM energy consumption model is built as a set of counters that
keep track of each of the commands issued to the DRAM. Each

224

CMP Parameters
ISA UltraSPARC III ISA
CMP Size and Core Frequency 4-core, 2 GHz
Re-Order-Buffer 64 entry
Fetch, Dispatch, Execute, and Retire Maximum 4 per cycle
L1 I-cache 32 KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 128 KB/8-way, shared, 10-cycle
L1 and L2 Cache Line Size 64 Bytes
Coherence Protocol Snooping MESI

DRAM Parameters
DRAM Device Parameters Micron MT47H64M8 DDR2-800 Timing parameters [41],

tCL=tRCD=tRP =20ns(4-4-4 @ 200 MHz)
4 banks/device, 16384 rows/bank, 512 columns/row, 8-bit output/device

DIMM Configuration 8 Non-ECC un-buffered DIMMs, 1 rank/DIMM, 64 bit channel, 8 devices/DIMM
DIMM-Level Row-Buffer Size 8 KB
Active Row-Buffers per DIMM 4
Total DRAM Capacity 512 MBit/device × 8 devices/DIMM × 8 DIMMs = 4 GB

Table 1. Simulator Parameters.

pre-charge, activation, CAS, write-back to DRAM cells, etc. are
recorded and total energy consumed reported using energy parame-
ters derived from Micron MT47H64M8 DDR2-800 datasheet [41].
We do not model the energy consumption of the data and command
buses as our schemes do not affect them. The energy consumption
of the mapping table (MT) is derived from CACTI [43, 54] and is
accounted for in the simulations.

Our schemes are evaluated with full system simulation of a wide
array of benchmarks. We use multi-threaded workloads from the
PARSEC [9], OpenMP version of NAS Parallel Benchmark [7],
and SPECJBB [3] suites. We also use the STREAM [1] benchmark
as one of our multi-threaded workloads. We use single threaded ap-
plications from SPEC CPU 2006 [24] and BioBench [4] suites for
our multi-programmed workload mix. While selecting individual
applications from these suites, we first characterized applications
for their total DRAM accesses, and then selected two applica-
tions from each suite that had the highest DRAM accesses. For
both multi-threaded and single-threaded benchmarks, we simulate
the application for 250 million cycles of execution. For multi-
threaded applications, we start simulations at the beginning of
the parallel-region/region-of-interest of the application, and for
single-threaded we start from 2 billion instructions after the start
of the application. Total system throughput for single-threaded
benchmarks is reported as weighted speedup [51], calculated asPn

i=1(IPCi
shared/IPCi

alone), where IPCi
shared is the IPC of

program i in an “n” core CMP.
The applications from PARSEC suite are configured to run with

simlarge input set, applications from NPB suite are configured with
Class A input set and STREAM is configured with an array size
of 120 million entries. Applications from SPEC CPU2006 suite
were exectued with the ref inputs and BioBench applications with
the default input set. Due to simulation speed constraints, we only
simulated each application for 250 million cycles. This resulted
in extremely small working set sizes for all these applications.
With 128 KB L1 size and 2 MB L2 size, we observed very high
cache hit-rates for all these applications. We therefore had to scale
down the L1 and L2 cache sizes to see any significant number
of DRAM accesses. While deciding upon the scaled down cache
sizes, we chose 32 KB L1 size and 128 KB L2 size since these
sizes gave approximately the same L1 and L2 hit-rate as when the
applications were run to completion with larger cache sizes. With
the scaled down cache sizes, the observed cache hit-rates for all the
applications are show in Table 2.

For all our experiments, we record the row-buffer hit rates, mea-
sure energy consumed by the DRAM memory system, and com-

Benchmark L2 Hit Rate Input Set
blackscholes 89.3% simlarge
bodytrack 59.0% simlarge
canneal 23.8% simlarge
facesim 73.9% simlarge
ferret 79.1% simlarge
freqmine 83.6% simlarge
streamcluster 65.4% simlarge
swaptions 93.9% simlarge
vips 58.45% simlarge
IS 85.84% class A
MG 52.4% class A
mix 36.3% ref (SPEC), default (BioBench)
STREAM 48.6% 120 million entry array
SPECJBB 69.9% default

Table 2. L2 Cache Hit-Rates and Benchmark Input Sets.

pute the throughput for our benchmarks. All experiments were per-
formed with both First-Come First-Serve (FCFS) and First-Ready
First-Come First-Serve (FR-FCFS) memory controller scheduling
policies. Only results for the FR-FCFS policy are shown since it is
the most commonly adopted scheduling policy. We show results for
three types of platforms:

• Baseline - This is the case where OS pages are laid out as
shown in Figure 1. The OS is responsible for mapping pages
to memory frames and since we simulate Linux OS, it relies on
the buddy system [33] to handle physical page allocations. (For
some applications, we use Solaris OS.)

• Epoch Based Schemes - These experiments are designed to
model the proposed schemes. Every epoch an OS sub-routine
is triggered that reads the access counters at the memory con-
troller and decides if migrating a micro-page is necessary. The
mechanism to decide if a micro-page needs to be migrated, and
the details on how migrations are affected have already been
described in detail in Section 3 for each proposal.

• Profiled Placement - This is a two pass experiment designed
to quantify an approximate upper-bound on the performance of
our proposals. It does so by “looking into the future” to deter-
mine the best layout. During the first pass, we create a trace of
OS page accesses. For the second pass of the simulation, we
pre-process these traces and determine the best possible place-
ment of micro-pages for every epoch. The best placement is

225

Figure 6. Accesses to Micro-Pages in Reserved DRAM Capacity.

decided by looking at the associated cost of migrating a page
for the respective scheme, and the benefit it would entail. An
important fact to note here is that since multi-threaded simula-
tions are non-deterministic, these experiments can be slightly
unreliable indicators of best performance. In fact for some of
our experiments, this scheme shows performance degradation.
However it’s still an important metric to determine the approx-
imate upper bound on performance.

For all our experimental evaluations, we assume a constant
overhead of 70,000 cycles per epoch to execute the OS daemon
and for DRAM data migrations. For a 5 million cycle epoch, this
amounts to 1.4% overhead per epoch in terms of cycles. From our
initial simulations, we noticed that approximately 900 micro-pages
were being moved every epoch for all our simulated applications.
From the parameters of our DRAM configuration, this evaluates
to nearly 60,000 DRAM cycles for migrations. For all the above
mentioned schemes, we present results for different epoch lengths
to show the sensitivity of our proposals to this parameter. We
assume 4 KB OS pages size with 1 KB micro-page size for all our
experiments.

For the ROPS scheme, we assume an additional, constant
10,000 cycle penalty for all 1 KB → 4 KB superpage creations
in an epoch. This overhead models the identification of candidate
pages and the update of OS book-keeping structures. TLB shoot-
down and the ensuing page walk overheads are added on top of this
overhead. We do not model superpage creation beyond 4 KB as this
behavior is expected to be the same for the baseline and proposed
models.

The expected increase in page table size because of the use of
smaller 1 KB pages is not modeled in detail in our simulator. Af-
ter application warm-up and superpage promotion, the maximum
number of additional page table entries required is 12,288 on a
4 GB main memory system, a 1.1% overhead in page table size.
This small increase in page table size is only expected to impact
cache behavior when TLB misses are unusually frequent – which
is not the case, thus it does not affect our results unduly.

We chose to model 4 KB page sizes for this study as 4 KB pages
are most common in hardware platforms like x86 and x86 64. An
increase in baseline page size (to 8 KB or larger) would increase
the improvement seen by our proposals, as the variation in sub-
page block accesses increase. UltraSPARC and other enterprise
hardware often employ a minimum page size of 8 KB to reduce the
page table size when addressing large amounts of memory. Thus,

Figure 7. Performance Improvement and Change in TLB Hit-
Rates (w.r.t. Baseline) for ROPS with 5 Million Cycle Epoch
Length

the performance improvements reported in this study are likely to
be a conservative estimate for some architectures.

4.2 Evaluation

We first show that reserving 0.5% of our DRAM capacity (4 MB,
or 4096 1 KB slots) for co-locating hot micro-pages is sufficient in
Figure 6. We simulated applications with a 5 million cycle epoch
length. For each application, we selected an epoch that touched
the highest number of 4 KB pages and plotted the percent of total
accesses to micro-pages in the reserved DRAM capacity. The total
number of 4 KB pages touched is also plotted in the same figure
(right hand Y-axis). For all but 3 applications (canneal, facesim,
and MG), on an average 94% of total access to DRAM in that
epoch are to micro-pages in the reserved 4 MB capacity. This figure
also shows that application footprints per epoch are relatively small
and our decision to use only 512 counters at the DRAM is also
valid. We obtained similar results with simulation intervals several
billions of cycles long.

Next we present results for the reduced OS page size (ROPS)
scheme, described in Section 3.1, in Figure 7. The results are
shown for 14 applications - eight from PARSEC suite, two from
NPB suite, one multi-programmed mix from SPEC CPU2006 and
BioBench suites, STREAM, and SPECjbb2005.

Figure 7 shows the performance of the proposed scheme com-
pared to baseline. The graph also shows the change in TLB hit-rates
for 1 KB page size compared to 4 KB page size, for a 128-entry
TLB (secondary Y-axis, right hand-side). Note that for most of the
applications, the change in TLB hit-rates is very small compared
to baseline 4 KB pages. This demonstrates the efficacy of super-
page creation in keeping TLB misses low. Only for three appli-
cations (canneal, multi-programmed workload mix, and SPECjbb)
does the change in TLB hit-rates go over 0.01% compared to base-
line TLB hit-rate. Despite sensitivity of application performance to
TLB hit-rate, with our proposed scheme both canneal and SPECjbb
show notable improvement. This is because application perfor-
mance tends to be even more sensitive to DRAM latency. There-
fore, for the ROPS proposal, a balance must be struck between re-
duced DRAM latency and reduced TLB hit-rate. Out of these 14
applications, 5 show performance degradation. This is attributed to
the overheads involved in DRAM copies, increased TLB miss-rate,
and the daemon overhead, while little performance improvement

226

Figure 8. Energy Savings (E∗D2) for ROPS with 5 Million Cycle
Epoch Length

is gained from co-locating micro-pages. The reason for low per-
formance improvements from co-location is the nature of these ap-
plications. If applications execute tight loops with regular access
pattern within OS pages, then it is hard to improve row-buffer hit-
rates due to fewer, if any, hot micro-pages. We talk more about this
issue when we discuss results for the HAM scheme below.

In Figure 8, we present energy-delay-squared (E ∗ D2) for the
ROPS proposal with epoch length of 5 million cycles, normalized
to the baseline. E refers to the DRAM energy (excluding mem-
ory channel energy) per CPU load/store. D refers to the inverse
of throughput. The second bar (secondary Y-axis) plots the perfor-
mance for convenient comparison. All applications, except ferret
have lower (or as much) E ∗D2 compared to baseline with the pro-
posed scheme. A higher number of row-buffer hits leads to higher
overall efficiency: lower access time and lower energy. The average
savings in energy for all the applications is nearly 12% for ROPS.

Figure 9 shows the results for Hardware Assisted Migration
(HAM) scheme, described in Section 3.2, along with ROPS and
the profiled scheme, for a 5 million cycle epoch length. Only
two benchmarks suffer performance degradation. This performance
penalty occurs because a quickly changing DRAM access pattern
does not allow HAM or ROPS to effectively capture the micro-
pages that are worth migrating. This leads to high migration over-
heads without any performance improvement, leading to overall
performance degradation. For the Profile scheme, the occasional
minor degradation is caused due to non-determinism of multi-
threaded workloads as mentioned earlier.

Compute applications, like those from NPB suite, some from
PARSEC suite, and the multi-programmed workload (SPEC-CPU
and BioBench suites), usually show low or negative performance
change with our proposals. The reason for these poor improvements
are the tight loops in these applications that exhibit very regular
data access pattern. This implies there are fewer hot micro-pages
within an OS page. Thus compared to applications like vips - that
do not stride through OS pages - performance improvement is
not as high for these compute applications. The prime example of
this phenomenon is the STREAM application. This benchmark is
designed to measure the main memory bandwidth of a machine,
and it does so by loop based reads and writes of large arrays. As
can be seen from the graph, it exhibits a modest performance gain.
Applications like blackscholes, bodytrack, canneal, swaptions, vips
and SPECjbb which show substantial performance improvement
on the other hand, all work on large data sets while they access

Figure 9. Profile, HAM and ROPS - Performance Improvement
for 5 Million Cycle Epoch Length

some OS pages (some micro-pages to be precise) heavily. These
are possibly code pages that are accessed as the execution proceeds.
The average performance improvement for these applications alone
is approximately 9%.

Figure 10 plots the E ∗ D2 metric for all these 3 schemes.
As before, lower is better. Note that while accounting for energy
consumption under the HAM scheme, we take into account the
energy consumption in DRAM, and energy lost due to DRAM
data migrations and MT look-ups. All but one application perform
better than the baseline and save energy for HAM. As expected,
Profile saves the maximum amount of energy while HAM and
ROPS closely track it. ROPS almost always saves less energy than
HAM since TLB misses are costly, both in terms of DRAM access
energy and application performance. On an average, HAM saves
about 15% on E∗D2 compared to baseline with very little standard
deviation between the results (last bar in the graph).

Epoch length is an important parameter in our proposed schemes.
To evaluate the sensitivity of our results to epoch length, we exper-
imented with many different epoch durations (1 M, 5 M, 10 M,
50 M and 100 M cycles). The results from experiments with epoch
length of 10 M cycles are summarized in Figures 11 and 12. A
comparison of Figures 9, 10, 11, and 12 shows that some applica-
tions (such as SpecJBB) benefit more from the 5 M epoch length,
while others (blackscholes) benefit more from the 10 M epoch
length. We leave the dynamic estimation of optimal epoch lengths
for future work. We envision the epoch length to be a tunable pa-
rameter in software. We do observe consistent improvements with
our proposed schemes, thus validating their robustness. Since per-
formance and energy consumption are also sensitive to the memory
controller’s request scheduling policy, we experimented with First-
Come First-Serve (FCFS) access policy. As with variable epoch
length experiments, the results show consistent performance im-
provements (which were predictably lower than FR-FCFS policy).

Finally, to show that our simulation interval of 250 million cy-
cles was representative of longer execution windows, we also eval-
uated our schemes for 1 billion cycle simulation window. In Fig-
ure 13 we present results for this sensitivity experiment. We only
show the performance improvement over baseline as E∗D2 results
are similar. As can be observed, the performance improvement is
almost identical to 250 million cycle simulations.

Results Summary. For both ROPS and HAM, we see consistent
improvement in energy and performance. The higher benefits with
HAM are because of its ability to move data without the overhead

227

Figure 10. Profile, HAM and ROPS - Energy Savings (E ∗ D2)
for 5 Million Cycle Epoch Length

of TLB shoot-down and TLB misses. For HAM, since updating the
MT is not expensive, the primary overhead is the cost of perform-
ing the actual DRAM copy. The energy overhead of MT look-up is
reduced due to design choices and is marginal compared to page
table updates and TLB shoot-downs and misses associated with
ROPS. Due to these lower overheads, we observe HAM performing
slightly better than ROPS (1.5% in terms of performance and 2%
in energy for best performing benchmarks). The two schemes in-
troduce different implementation overheads. While HAM requires
hardware additions, it exhibits slightly better behavior. ROPS, on
the other hand, is easier to implement in commodity systems today
and offers flexibility because of its reliance on software.

5. Related Work
A large body of work exists on DRAM memory systems. Cuppu et
al. [18] first showed that performance is sensitive to DRAM data
mapping policy and Zhang et al. [59] proposed schemes to reduce
row-buffer conflicts using a permutation based mapping scheme.
Delaluz et al. [19] leveraged both software and hardware tech-
niques to reduce energy while Huang et al. [25] studied it from
OS’ virtual memory sub-system perspective. Recent work [60, 61]
focuses on building higher performance and lower energy DRAM
memory systems with commodity DRAM devices. Schemes to
control data placement in large caches by modifying physical ad-
dresses have also been studied recently [6, 13, 23, 58]. We build on
this large body of work to leverage our observations that DRAM
accesses to most heavily accessed OS pages are clustered around
few cache-line sized blocks.

Page allocation and migration have been employed in a variety
of contexts. Several bodies of work have evaluated page coloring
and its impact on cache conflict misses [10, 20, 32, 42, 50]. Page
coloring and migration have been employed to improve proximity
of computation and data in a NUMA multi-processor [12, 15, 34–
36, 55] and in a NUCA caches [6, 14, 47]. These bodies of work
have typically attempted to manage capacity constraints (especially
in caches) and communication distances in large NUCA caches.
Most of the NUMA work pre-dates the papers [17, 18, 48] that
shed insight on the bottlenecks arising from memory controller
constraints. Here, we not only apply the well-known concept of
page allocation to a different domain, we extend our policies to
be cognizant of the several new constraints imposed by DRAM
memory systems, particularly row-buffer re-use.

Figure 11. Profile, HAM and ROPS - Performance Improvement
for 10 Million Cycle Epoch Length

Figure 12. Profile, HAM and ROPS - Energy Savings (E ∗ D2)
Compared to Baseline for 10 Million Cycle Epoch.

A significant body of work has been dedicated to studying the
effects of DRAM memory on overall system performance [17, 39]
and memory controller policies [21, 48]. Recent work on memory
controller policies studied effects of scheduling policies on power
and performance characteristics [44, 45, 60, 62] for CMPs and
SMT processors. Since the memory controller is a shared resource,
all threads experience a slowdown when running in tandem with
other threads, relative to the case where the threads execute in iso-
lation. Mutlu and Moscibroda [44] observe that the prioritization
of requests to open rows can lead to long average queueing delays
for threads that tend to not access open rows. This leads to unfair-
ness with some threads experiencing memory stall times that are
ten times greater than that of the higher priority threads. That work
introduces a Stall-Time Fair Memory (STFM) scheduler that esti-
mates this disparity and over-rules the prioritization of open row
access if the disparity exceeds a threshold. While this policy ex-
plicitly targets fairness (measured as the ratio of slowdowns for the
most and least affected threads), minor throughput improvements
are also observed as a side-effect. We believe that such advances

228

Figure 13. Profile, HAM and ROPS - Performance Improvements
for 10M Cycle Epoch Length, and 1 Billion Execution Cycles.

in scheduling policies can easily be integrated with our policies to
give additive improvements.

Our proposals capture locality at the DRAM row-buffer, how-
ever we believe our approach is analogous to proposals like vic-
tim caches [31]. Victim caches are populated by recent evictions,
while our construction of an efficient “DRAM region” is based on
the detection of hot-spots in the access stream that escapes what-
ever preceding cache level. Our proposal takes advantage of the fact
that co-location of hot-spots leads to better row-buffer utilization,
while the corresponding artifact does not exist in traditional victim
caches. The optimization is facilitated by introducing another level
of indirection. Victim caches, on the other hand, provide increased
associativity for a few sets, based on application needs. Therefore,
we don’t believe that micro-pages and victim caches are compara-
ble in terms of their design or utility.

6. Conclusions
In this paper we attempt to address the issues of increasing energy
consumption and access latency being faced by modern DRAM
memory systems. We propose two schemes that control data place-
ment for improved energy and performance characteristics. These
schemes are agnostic to device and signaling standards and there-
fore their implementation is not constrained by standards. Both
schemes rely on DRAM data migration to maximize hits within a
row-buffer. The hardware based proposal incurs less run-time over-
head, compared to the software-only scheme. On the other hand,
the software-only scheme can be easily implemented without ma-
jor architectural changes and can be more flexible. Both schemes
provide overall performance improvements of 7-9% and energy im-
provements of 13-15% for our best performing benchmarks.

Acknowledgments
We would like to thank our shepherd Michael Swift for his in-
puts to improve this paper. We also thank the anonymous reviewers
for their valuable comments and suggestions. This work was sup-
ported in parts by NSF grants CCF-0430063, CCF-0811249, CCF-
0702799, CCF-0916436, NSF CAREER award CCF-0545959, In-
tel, SRC grant 1847.001 and the University of Utah.

References
[1] STREAM - Sustainable Memory Bandwidth in High Performance

Computers. http://www.cs.virginia.edu/stream/.

[2] Virtutech Simics Full System Simulator. http://www.virtutech.com.

[3] Java Server Benchmark, 2005.
Available at http://www.spec.org/jbb2005/.

[4] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-
W. Tseng, and D. Yeung. BioBench: A Benchmark Suite of
Bioinformatics Applications. In Proceedings of ISPASS, 2005.

[5] K. Asanovic and et. al. The Landscape of Parallel Computing Re-
search: A View from Berkeley. Technical report, EECS Department,
University of California, Berkeley, 2006.

[6] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic
Hardware-Assisted Software-Controlled Page Placement to Manage
Capacity Allocation and Sharing within Large Caches. In Proceedings
of HPCA, 2009.

[7] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, D. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel
Benchmarks. International Journal of Supercomputer Applications, 5
(3):63–73, Fall 1991.

[8] L. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan
& Claypool, 2009.

[9] C. Benia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. Technical
report, Department of Computer Science, Princeton University, 2008.

[10] B. Bershad, B. Chen, D. Lee, and T. Romer. Avoiding Conflict Misses
Dynamically in Large Direct-Mapped Caches. In Proceedings of
ASPLOS, 1994.

[11] J. Carter, W. Hsieh, L. Stroller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a Smarter Memory Controller. In
Proceedings of HPCA, 1999.

[12] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum.
Scheduling and Page Migration for Multiprocessor Compute Servers.
In Proceedings of ASPLOS, 1994.

[13] M. Chaudhuri. PageNUCA: Selected Policies For Page-Grain Locality
Management In Large Shared Chip-Multiprocessor Caches. In
Proceedings of HPCA, 2009.

[14] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation. In Proceedings of MICRO, 2006.

[15] J. Corbalan, X. Martorell, and J. Labarta. Page Migration with
Dynamic Space-Sharing Scheduling Policies: The case of SGI 02000.
International Journal of Parallel Programming, 32(4), 2004.

[16] R. Crisp. Direct Rambus Technology: The New Main Memory
Standard. In Proceedings of MICRO, 1997.

[17] V. Cuppu and B. Jacob. Concurrency, Latency, or System Overhead:
Which Has the Largest Impact on Uniprocessor DRAM-System
Performance. In Proceedings of ISCA, 2001.

[18] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance
Comparison of Contemporary DRAM Architectures. In Proceedings
of ISCA, 1999.

[19] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. Irwin. DRAM Energy Management Using Software and Hardware
Directed Power Mode Control. In Proceedings of HPCA, 2001.

[20] X. Ding, D. S. Nikopoulosi, S. Jiang, and X. Zhang. MESA: Reducing
Cache Conflicts by Integrating Static and Run-Time Methods. In
Proceedings of ISPASS, 2006.

[21] X. Fan, H. Zeng, and C. Ellis. Memory Controller Policies for DRAM
Power Management. In Proceedings of ISLPED, 2001.

[22] Z. Fang, L. Zhang, J. Carter, S. McKee, and W. Hsieh. Online
Superpage Promotion Revisited (Poster Session). SIGMETRICS
Perform. Eval. Rev., 2000.

229

[23] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive
NUCA: Near-Optimal Block Placement And Replication In Dis-
tributed Caches. In Proceedings of ISCA, 2009.

[24] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. In
Proceedings of ACM SIGARCH Computer Architecture News, 2005.

[25] H. Huang, P. Pillai, and K. G. Shin. Design And Implementation
Of Power-Aware Virtual Memory. In Proceedings Of The Annual
Conference On Usenix Annual Technical Conference, 2003.

[26] H. Huang, K. Shin, C. Lefurgy, and T. Keller. Improving Energy
Efficiency by Making DRAM Less Randomly Accessed. In
Proceedings of ISLPED, 2005.

[27] Intel 845G/845GL/845GV Chipset Datasheet: Intel
82845G/82845GL/82845GV Graphics and Memory Controller Hub
(GMCH). Intel Corporation, 2002.
http://download.intel.com/design/chipsets/datashts/29074602.pdf.

[28] ITRS. International Technology Roadmap for Semiconductors, 2007
Edition. http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[29] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems - Cache,
DRAM, Disk. Elsevier, 2008.

[30] JEDEC. JESD79: Double Data Rate (DDR) SDRAM Specification.
JEDEC Solid State Technology Association, Virginia, USA, 2003.

[31] N. Jouppi. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers. In
Proceedings of ISCA-17, pages 364–373, May 1990.

[32] R. E. Kessler and M. D. Hill. Page Placement Algorithms for Large
Real-Indexed Caches. ACM Trans. Comput. Syst., 10(4), 1992.

[33] D. E. Knuth. The Art of Computer Programming: Fundamental
Algorithms, volume 1. Addison-Wesley, third edition, 1997.

[34] R. LaRowe and C. Ellis. Experimental Comparison of Memory
Management Policies for NUMA Multiprocessors. Technical report,
1990.

[35] R. LaRowe and C. Ellis. Page Placement policies for NUMA
multiprocessors. J. Parallel Distrib. Comput., 11(2), 1991.

[36] R. LaRowe, J. Wilkes, and C. Ellis. Exploiting Operating System
Support for Dynamic Page Placement on a NUMA Shared Memory
Multiprocessor. In Proceedings of PPOPP, 1991.

[37] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. Reinhardt, and
T. Wenisch. Disaggregated Memory for Expansion and Sharing in
Blade Servers. In Proceedings of ISCA, 2009.

[38] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-
hardt. Understanding and Designing New Server Architectures for
Emerging Warehouse-Computing Environments. In Proceedings of
ISCA, 2008.

[39] W. Lin, S. Reinhardt, and D. Burger. Designing a Modern Memory
Hierarchy with Hardware Prefetching. In Proceedings of IEEE
Transactions on Computers, 2001.

[40] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full
System Simulation Platform. IEEE Computer, 35(2):50–58, February
2002.

[41] Micron DDR2 SDRAM Part MT47H64M8. Micron Technology Inc.,
2004.

[42] R. Min and Y. Hu. Improving Performance of Large Physically
Indexed Caches by Decoupling Memory Addresses from Cache
Addresses. IEEE Trans. Comput., 50(11), 2001.

[43] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proceedings of MICRO, 2007.

[44] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In Proceedings of MICRO,
2007.

[45] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Systems.
In Proceedings of ISCA, 2008.

[46] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, Transparent
Operating System Support For Superpages. SIGOPS Oper. Syst. Rev.,
2002.

[47] N. Rafique, W. Lim, and M. Thottethodi. Architectural Support for
Operating System Driven CMP Cache Management. In Proceedings
of PACT, 2006.

[48] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. Memory
Access Scheduling. In Proceedings of ISCA, 2000.

[49] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reducing TLB
and Memory Overhead Using Online Superpage Promotion. In
Proceedings of ISCA-22, 1995.

[50] T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses Using
Hardware and Software Page Placement. In Proceedings of SC, 1999.

[51] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic Jobscheduling
with Priorities for a Simultaneous Multithreading Processor. In
Proceedings of SIGMETRICS, 2002.

[52] M. Swanson, L. Stoller, and J. Carter. Increasing TLB Reach using
Superpages Backed by Shadow Memory. In Proceedings of ISCA,
1998.

[53] M. Talluri and M. D. Hill. Surpassing the TLB Performance of
Superpages with Less Operating System Support. In Proceedings of
ASPLOS-VI, 1994.

[54] S. Thoziyoor, N. Muralimanohar, and N. Jouppi. CACTI 5.0.
Technical report, HP Laboratories, 2007.

[55] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating
system support for improving data locality on CC-NUMA compute
servers. SIGPLAN Not., 31(9), 1996.

[56] D. Wallin, H. Zeffer, M. Karlsson, and E. Hagersten. VASA: A
Simulator Infrastructure with Adjustable Fidelity. In Proceedings
of IASTED International Conference on Parallel and Distributed
Computing and Systems, 2005.

[57] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob. DRAMsim: A Memory-System Simulator. In SIGARCH
Computer Architecture News, volume 33, September 2005.

[58] X. Zhang, S. Dwarkadas, and K. Shen. Hardware Execution Throttling
for Multi-core Resource Management. In Proceedings of USENIX,
2009.

[59] Z. Zhang, Z. Zhu, and X. Zhand. A Permutation-Based Page
Interleaving Scheme to Reduce Row-Buffer Conflicts and Exploit
Data Locality. In Proceedings of MICRO, 2000.

[60] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-
Rank: Adaptive DRAM Architecture For Improving Memory Power
Efficiency. In Proceedings of MICRO, 2008.

[61] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM: Building
High-Bandwidth Memory System from Low-Speed DRAM Devices.
In Proceedings of ISCA, 2009.

[62] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM Memory
System Optimizations for SMT Processors. In Proceedings of HPCA,
2005.

[63] Z. Zhu, Z. Zhang, and X. Zhang. Fine-grain Priority Scheduling on
Multi-channel Memory Systems. In Proceedings of HPCA, 2002.

230

