REDRAW: Fast and Efficient Hardware Accelerator
with Reduced Reads And Writes for 3D UNet

Tom Glint
IIT Gandhinagar, India
tom.issac @iitgn.ac.in

Abstract—Hardware Accelerators (HAs) proposed so far have
been designed with a focus on 2D Convolutional Neural Networks
(CNNs) and 3D CNNs using temporal data. To the best of our
knowledge, there is no existing HA for 3D CNNs using spatial data.
3D UNet is a 3D CNN with significant applications in the medical
domain. However, the total on-chip buffer size (>20 MB) required
for the complete stationery approach of processing 3D UNet is cost
prohibitive. In this work, we analyze the 3D UNet workload and
propose a HA with an optimized memory hierarchy with a total
on-chip buffer of less than 4 MB while conceding near theoretical
minimum memory accesses required for processing 3D UNet. We
demonstrate the efficiency of the proposed HA by comparing it
with SOTA Simba architecture with the same number of MAC
Units and show a 1.3x increase in TOPS/watt for an ISO-area
design. Further, we revise the proposed architecture to increase
the ratio of compute operations to memory operations and to meet
the latency requirement of 3D UNet-based embedded applications.
The revised architecture, compared against a dual instance of
Simba, has similar latency. Against the dual instance of Simba,
the proposed architecture achieves a 1.8x increase in TOPS/watt
in a similar area.

Index Terms—DNN Accelerator, 3D UNet, Modeling

I. INTRODUCTION

Convolutional Neural Networks (CNN) have shown tremen-
dous applications in the field of computer vision. Typically, 2D
CNN s are used for vision tasks such as image segmentation and
classification [1], [2]. In 3D CNNs, each input channel has a
depth dimension apart from width and height. Traditionally, the
depth dimension holds temporal data, like successive frames of
a video, and consequently, they have data redundancy along
this dimension [3]. Acceleration of such 3D CNN workloads
using conventional processors, coprocessors, GPUs, FPGAs,
and ASIC accelerators have been explored in past works, which
have exploited temporal data redundancy for efficient execution
[3], [4]. However, in 3D UNet [5], the depth dimension
represents spatial data. 3D UNet has multiple applications in the
field of medicine, like tumor identification and segmentation.
For example, 3D UNet is used for dosage calculation during
radiation therapy [6], [7], which makes this workload an edge
application with a single stream of input. 3D UNet has also

This work is supported through grants received from Science and Engineer-
ing Research Board (SERB), Government of India, under SERB-CRG grant
CRG/2018/005013, SERB-MATRICS grant MTR/2019/001605, and SERB-
SUPRA grant SPR/2020/000450, and funds received for YFRF Visvesvaraya
PhD fellowship from MEITY and Semiconductor Research Corporation (SRC)
through contracts 2020-IR-3005 and 2020-IR-2980, and is partially supported
through Ashoka University startup and Huawei Technologies India grants.

Manu Awasthi
Ashoka University, India
manu.awasthi @ashoka.edu.in

Joycee Mekie
IIT Gandhinagar, India
joycee@iitgn.ac.in

been incorporated into the MLPerf [2], [8] Inference benchmark
suite. 3D UNet is computationally intensive and has 7.48 tril-
lion algorithmic multiply-and-accumulate (MAC) operations, as
shown in Table I. Hence, inference edge applications based on
3D UNet require acceleration [2], [4], [8]. Since depth channels
in 3D UNet are spatial data, previous acceleration techniques
based on temporal data redundancy are not applicable.

The challenges to designing a fast and efficient accelerator
for 3D UNet are numerous. First, the SOTA DNN accelerator
design methodology uses architectural space search, which uses
workload specification as one of the inputs. However, due to
the large size and extra-dimensional shape of 3D UNet, the
search space is larger than 2'?8, making the search intractable
[9], [10]. Second, due to the nature of the application, 32-bit
number formats have to be used instead of 8-bit numbers to
preserve accuracy [11]. This significantly increases the compute
unit’s energy and the size of the on-chip buffers. Third, similar
to quantization techniques, approximation techniques are not a
viable option since they lead to accuracy degradation. Fourth,
the input, output, or filters must be kept fully inside the accel-
erator chip for efficient computation of layers of the workload
to implement stationary mapping, which in turn minimizes
costly DRAM accesses. However, the on-chip memory of
2D Hardware Accelerators (HA) is limited to a few hundred
kilobytes, while the input volume and filter volume are in the
order of 100s of megabytes for 3D UNet, as shown in Table 1.
Due to this, partial products have to be stored off-chip and
accumulated on-chip by re-fetching [4]. Finally, due to the large
word width, buffer access energy is also quadrupled compared
to typical HAs, and therefore, the updates to the on-chip buffer
need to be minimized. Table I shows the layer shape and data
reuse (number of time a data word participate in computation)
of each layer of 3D UNet.

The acceleration of 3D UNet has not been explored for HAs,
and previous approaches have been limited to coprocessors
or GPU-based approaches [3], [8]. In this work, we perform
a layer-by-layer analysis of 3D UNet and find capacity and
bandwidth constraints for designing a more efficient HA than
the SOTA CNN accelerator for edge applications. We identify
the smallest on-chip buffer size (~3.5 MB) for achieving near
theoretical external memory access for 3D UNet. Further, we
propose a unified architecture for reducing reads and writes to
the buffer by exploiting the size of related entities in compu-
tation (shape of the workload, input and output channel sizes).



TABLE 1 TABLE II
INDEX OF UNIQUE LAYERS IN 3D UNET COMPARISON OF OTHER EDGE INFERENCE ACCELERATOR FOR PEAK
PERFORMANCE
Layer | Input Shape Filter Input | Filter Filter
Index (Width x Height x Shape Reuse Reuse Size ENVISION [16] | STICKER [17] | UNPU [18] | Exynos [19] Simba
Technology 28nm 65nm 65nm 8nm 16nm
Depth X Channels) (Words) Core Area 1.87 mm? 7.8 mm? 13 mm? 5.5 mm? 3.1 mm?
1 | 224x224x160x32 3xX3x3x64 1728 | 8028160 55296 Brocision T16h 3 16 e5.16b 3
2 | 112x112x80x64 3x3x3x64 1728 | 1003520 110592 MACs per cycle 512@8b 256 1728@8b 1024 1024
3 | 112x112x80x64 3x3x3x128 | 3456 | 1003520 | 221184 Performance (TOPS) | ~0.15@8b 0.1 0.69@8b 191 2.05
4 56x56x40x128 3x3x3x128 3456 125440 442368
5 | 56x56x40x128 3x3x3x256 | 6912 | 125440 | 884736 . . . .. . .
PR T T o6 | 6012 15630 | 1769472 edge. Simba is very efficient in inferencing 2D Convolut}onal
7 | 28x28x20x256 3x3x3x512 | 13824 15680 | 3538944 Neural Network (CNN) workloads compared to conventional
8 | 28x28x20x512 2x2x2x512 | 4096 | 15680 | 2097152 processors, coprocessors, FPGAs, and GPUs. Table II shows
9 | 56x56x40x768 3x3x3x256 | 6912 | 125440 | 5308416 . ; .
10 | 56x56x40x256 3X3x3x256 | 6912 | 125440 | 1769472 the comparison of Simba with other edge accelerators. We note
11 | 56x56x40x256 2x2x2x256 | 2048 | 125440 | 524288 that there are other accelerators with higher performance per
12 | 112x112x80x384 3x3x3x128 | 3456 | 1003520 | 1327104 but th | .. hni 15 hich i
13 | 112x112x80x128 3x3x3x128 | 3456 | 1003520 | 442368 area, but they employ approximation techniques [15], which is
14 | 112x112x80x128 2x2x2x128 1024 | 1003520 | 131072 not desired for 3D UNet.
15 | 224x224x160x192 3x3x3x64 1728 | 8028160 | 331776
16 | 224x224x160x64 3x3x3x64 1728 | 8028160 | 110592 -
We further optimize the Multiply and Accumulate (MAC) unit o |l s Il Sl e
. . 5| || 3K g 2 1g 4 |
for low latency and low energy for 32-bit computation. The g E ég ' WE ?é =
. . . < gy Y bv]
proposed architecture with ISO-area as SOTA achieves 1.35x z| |5 R NIEE 4KB)(8x8x512 I%*S‘:; Eit
. . a <] ! = & =
TOPS per watt. Further, we extend the architecture to achieve a _ L || [ wERE NEE
. . . E R e L R i 2 |12 |N
the same throughput as two instances of SOTA while increasing | £ | 1B MACS 2124 [z
: 5 - . kY
the energy efficiency by 1.5x TOPS per watt and 1.8x as & el e LB R |
Simba Architecture \ L

compared to SOTA and 2x instance of SOTA, respectively
(with only 10% area overhead).

II. BACKGROUND
A. 3D UNet

i 'Encoder ﬁEExcitation :
H Decoder Final conv

/4 Lanl

Fig. 1. 3D UNet with concatenation and up-convolution

3D UNet has very high accuracy in identifying and segment-
ing anomalies in medical data such as MRI data [6], [7], [12].
As shown in Fig. 1, the input to 3D UNet is a collection
of voxels that stores spatial data. They are represented as
multiple channels of 3D matrices, as detailed in Table I. In
3D convolution operation, the kernel is 3D in nature and is slid
along the depth dimension apart from the width and height. Due
to this sweep, a large number of MAC operations (~7 trillion)
have to be performed for inference. Traditional processors will
take multiple minutes to process an input for 3D UNet, while
the SOTA GPU with a power draw of 400 W and 826 mm?
chip area will take ~2 second [8], [13]; making both these
approaches infeasible and cost prohibitive for edge applications.
Further, the information stored in these voxels is not temporal
and is spatial, reducing opportunities for compression.

III. CURRENT SOTA FOR SPATIAL WORKLOADS ON EDGE

Simba [14] is the state-of-the-art and data-agnostic Hardware
Accelerator (HA) architecture for CNN-based inferencing on

Fig. 2. Left Top: Simba Architecture [14] connected to an external memory.
The architecture consists of 16 Processing Elements (PE) connected with each
other and the global buffer over a Network-on-Chip (NoC). Right Top: shows
the internal components of a PE

As shown in Fig. 2, each Simba chip has a global buffer, 16
Processing Elements (PE) arranged in mesh Topology and a
RISC-V processor, and is connected to an external memory,
which stores the inputs, outputs and weights used in CLs
and FCLs. The RISC-V processor coordinates the flow and
execution of data to each PE. Each PE has separate buffers for
input, weight, and partial sums. As shown in Fig. 2, eight input
words are commonly shared across eight vector MAC units.
Each vector MAC unit has eight multipliers whose products
are summed up into a single word using an adder tree and
stored at the accumulation buffer after adding to the previous
partial sum. Each vector MAC unit has a dedicated weight
buffer. Inputs and weights of each layer are fetched from the
external memory and buffered at various levels for optimum
data reuse. The final outputs of each layer are written back to
memory.

IV. PROPOSAL

Embedded systems such as field scanners augmented with
Machine Learning algorithms can significantly increase patient
outcomes [6], [7]. For adopting and employing 3D UNet in
such scenarios, we require a DNN accelerator for 3D UNet
which can process an input under 5 seconds [12] and draw
less than 50 W of power [20]. Three significant challenges
need to be overcome to meet these operational constraints in
the context of processing 3D UNet with accelerators. First,
external DRAM access is energy-intensive, so access to external
memory must be minimized. Second, due to the 32-bit number
used in computation, internal buffers are large, and access
energy is high; therefore, reads and writes to the internal



buffer must be minimized. Finally, 32-bit multiplication is
energy intensive at low latencies, and therefore, techniques to
increase compute throughput without increasing energy have
to be developed at the Processing Element. In this work, we
propose a DNN accelerator architecture that tackles these three
challenges in the following manner. First, we analyze the 3D
UNet workload and identify the mapping of workload to the
hardware such that access to the DRAM is near the theoretical
minimum while only allocating 1/6" the buffer size required
to perform stationary mapping approaches. This results in a
total chip area of only 59 mm? in 45 nm technology. Second,
we identify compute patterns that can be combined together
to reduce reads and writes to the internal buffers. Finally,
we propose a dual-MAC architecture that uses multicycle 32-
bit multipliers for low-energy computation inside PEs while
maintaining high throughput. A detailed analysis is presented
in Section VI. Further, we compare the proposed architecture
with SOTA DNN accelerator Simba and show component-wise
improvement.

V. EXPERIMENTAL SETUP AND MODELING

The experimental framework used for a fair and detailed
comparison has two aspects: First, the baseline hardware
(Simba) and the proposed hardware are modeled, and its
hardware-bound aspects are captured using a framework made
up of Timeloop [21], Accelergy [22], and Cacti [23]. The pa-
rameters for multipliers and adders are obtained from Cadence
Genus Synthesis at the 45 nm technology node. Second, the
optimal workload mapping (for least latency and energy) is
found using Timeloop-mapper for each hardware, rather than a
static mapping policy, for a fair comparison of accelerators. The
scaled (8-bit to 32-bit conversion) configuration of the Simba
baseline used in this work is given in Table III.

TABLE III

SPECIFICATION OF SIMBA (BASELINE)
Property Value (baseline)
External memory used DDR4 DRAM
Baseline Architecture Simba
Bandwidth to DRAM from chip 25 GBps
Access energy to DRAM from logic die 46 pl/bit
Global buffer size 128 KB
No. of PEs 16
MAC Units per PE 64
PE weight buffer size 128 KB
PE input buffer size 32 KB
PE output buffer size 12 KB
MAC latency 979 ps
Word size 32 Bit float

A. Hardware model and optimal mapping

The model in this work captures the spatial organization of a
DNN accelerator, including the hierarchy of different memory
like DRAM, SRAM buffers, registers, and the placement of
MAC units in relation to the memory hierarchy. Further, it
captures the bandwidth available for communication between
each unit. The model accumulates every event during the
inference and calculates energy values at the granularity of an
event.
B. Workloads

This work primarily focuses on the layer-by-layer data-
agnostic processing of 3D UNet during its inference. The
compute precision is 32-bit float. This work does not consider

HW/SW codesign techniques which usually alter the data, and
since 3D UNet is used for medical applications, changes in
accuracy introduced by these methods are not acceptable [11].
C. Timeloop Mapper

It identifies all possible permutations of mapping a workload
to a given architecture and calculates the latency and energy as-
sociated with each mapping based on Timeloop and Accelergy
models. Further, our mappings are optimized for least latency
followed by least energy.

VI. METHODOLOGY

Architectural search using workload definition is not
tractable for 3D UNet due to its size and complexity [9], [10].
Hence, approaches to finding bottlenecks and opportunities are
utilized to obtain efficient architecture.

A. Reads and Writes to buffers

A MAC operation translates to 3 read operations from and
1 write operation to the buffer. Identifying and combining
computations that share data can reduce these reads and writes.
From Table I, it can be observed that a single input channel
participates in the production of Nx32 output channels for
some value of V. Hence, a single SRAM read can be shared
and fed to 32 multipliers resulting in the generation of 32
output channels. Similarly, Mx32 input channels result in the
generation of one output channel, for some value of M. So,
results of multiplication that align in the depth dimension of
the input can be accumulated together using an adder tree.
This reduces the number of updates to the partial sum in the
output buffer to 1:32 compared to no alignment. Further, this
combination reduces the area for peripheral circuitry of buffer
structures.

B. Low energy multiplication

1)
(=)

oy
(5]
!
T

o
|
T

(=]

Dynamic Energy (pJ)
-
S

=
-
N
w

4 5 6 7 8 9 10 11
Latency of the multiplier

Fig. 3. Energy vs. latency of 32-bit floating point multiplier

Implementations of SOTA DNN accelerators operate be-
tween 1 GHz to 2 GHz. However, they operate on 8-bit
numbers and thus have low energy consumption. However,
for maintaining high precision, 3D UNet requires 32-bit float
point operations [11]. Increasing the bit-width of the number
representation increases energy in a quadratic manner. Nev-
ertheless, while processing DNNs, sequential multiplication
does not use the product from previous multiplication as an
input; therefore, using multiple, multi-cycle multipliers could
have energy benefits while maintaining high frequency and
throughput.

Fig. 3 shows the energy associated with 32-bit multipliers
operating at different latencies. It can be observed that a
multiplier operating with a latency of 2 ns (500 MHz) uses
much lower energy than a multiplier operating at 1 ns (1 GHz).



Any further increase in latency does not provide energy benefits
but would significantly increase the design area required for
high throughput similar to 1 GHz frequency. The 2 GHz
multiplier is not considered in this work as it is a multi-stage
design and has very high dynamic energy, which is unsuitable
for edge applications considered in this work.
C. Identifying internal buffer capacity

From Table I, the smallest volume among inputs, weights
and outputs are weights. For layer-by-layer processing using
stationary approaches, which result in theoretical minimum
external memory accesses, the on-chip buffer should have 5.3
million entries, and with 32-bit numbers, this translates to
a buffer size of 21.2MB, based on Table I. We explore the
possibility of having an alternative processing scheme that
requires smaller buffer sizes while achieving near theoretical
minimum external memory accesses. To do so, we construct a
simple accelerator model with buffer and MAC connected to
the external memory, as shown in Fig. 4. We vary the buffer
capacity from 32-kilo entries to 32 million entries and try all
possible mappings to find the optimal mapping for the least
Memory accesses.

= |

DRA

Fig. 4. Model used to identify ideal buffer size and mapping scheme
4E+10

t

ELayerl ®Layer2 MLayer3 MLayer4
W Layer5 " Layer6 M Layer7 M Layer8
B Layer9 MLayer10 M Layer1ll ®Layer12|

g 3.5E+10 |

3E+10 +

2.5E+10 +

2E+10 + u Layer13

1.5E+10 +

1E+10 +
5E+09 -+ I .
&

0

Main Memory Access Co

Buffer Entries
Fig. 5. External memory access vs buffer capacity for optimal mapping

Fig. 5 shows the total and layer-wise accesses to external
memory when processing 3D UNet on the one-MAC-one-
buffer model with various buffer capacities. From the graph,
~1 million entries provide near minimum access - any further
increase in buffer capacity has diminishing returns.

VII. PROPOSED ARCHITECTURE

‘Weight_buff Output_buff
I (32x32xP) > DMACHDMAC PMACIS—1 " (35 128)
I I I
) Weight_buff Output_buff
% I (32x32xP) PMACIDMAC PMAC (32 x 128)
&
= 5
&
2 13 A
jay ‘Weight_buff Output_buff
£ I (32x32xP) HDMACHDMAC}—{DMACH (32x 128) I
: ]

Input_buff T T
32x32xQ)
Reduced Read And Write (REDRAW) Architecture

Fig. 6. REDRAW Architecture.

Unified PE

We propose the REDRAW architecture based on the obser-
vations made in Section VI in Fig. 6. The architecture consists

of an optional global buffer (GLB) and a single unified PE. As
shown in later sections, the optional GLB buffer can be omitted
from implementation if the area is a priority constraint and will
not significantly impact overall performance. The layer-wise
input and weight data are fetched from the external DRAM
for processing, and the final layer output is written back to
the external DRAM. Based on the optimal mapping, the chip
controller can selectively bypass GLB for input, weights, and
outputs, and data can be directly written to the buffers inside the
PE. There are separate buffers for inputs, weights and outputs
within the PE. As seen in Fig. 6, the input buffer is 32 words
wide, and Q) deep, and each word is shared across R Dual-
MACs (DMAC). Each DMAC contains two multipliers that
operate for every other cycle in a tick-tock fashion. There are
R weight and output buffers inside the PE, each corresponding
to an output channel that is processed in parallel. Here, the
local weight buffer is 32 words wide and P deep, and provides
weight data to all DMACs in a row, while the output buffer is
only one word wide as the sum of products from the DMAC
units are accumulated using an adder tree. Since all the local
weight buffers together can result in 1024 reads in a cycle, to
reduce overall energy, partial sums corresponding to different
output words that use the same weight word are performed
sequentially till the output buffer is filled before moving to
the next weight word. This processing strategy ensures 100%
utilization of DMACSs during the processing of 3D UNet. The
rest of the order of computation (which determines the optimal
mapping) along parameter N and M (discussed in Section
VI-A), and height, width and depth of the output channel differs
from layer to layer based on size and shape and is found using

Timeloop to get the lowest latency and energy.
TABLE IV
VARIATIONS OF REDRAW ARCHITECTURE

Name Parameters Description Area
P=217, Q=1024 Same peek 10% less
R_AM R=32 performance (TOPS) area than
NO GLB as Simba. 1x Simba
P=432, Q=1024 Same peek 10% more
R_MMA R=64 performance area than
NO GLB as 2x instance of Simba 2x Simba
_ _ For sensitivity analysis of 13% more
R_GMMA 15:_222;;&3}: 254}'3 including area than
’ the optional global buffer 2x Simba
P, Q=variable For sensitivity analysis of buffer
R_xMMA R=64 distribution

Table IV shows the implementations of the REDRAW ar-
chitecture considered for evaluation. In the table, R_AM is
used to compare against a single instance of SOTA (Simba)
to show the energy efficiency that can be achieved under
ISO-area, whereas R_MMA is the optimal design with near
minimum theoretical memory accesses. Simba2x represents a
system with two instances of Simba chiplet and has the same
peek performance as R_MMA.

VIII. RESULTS AND EVALUATION
A. Area breakdown
Fig. 8 shows the breakdown of the area of the proposed
accelerator. R_AM has a similar area as that of Simba and is
used to evaluate the efficacy of observation made in Section
VI-A and VI-B. R_MMA exploits the observation made in
Section VI-C and is designed to meet the constraints of



G50

g 20 u MAC ® Regs ® InputBuff ® WeightBuff
S0t

= ® OutputBuff = GLB E DRAM

B30 .0l Tl P |
3-120 -

Q 10

=

E 0 1 1 1 1 1 1 1 1
- Lal[aN([32155, 1] Q|| NN || \O | v=| [ 0 [ H (L \O| x| 00| N S v=i| O 00| H| L \O | v | | 00| <H| L[ O WHNMQ"U’\D[\&Q\OHLVW;WH)\D %2<
15 o | | e | | e e o | o | e e e | | o | o | e e e | N

a A<=
% =
g Simba Simba2x R_AM R_MMA AVG
=

Fig. 7. Amortized energy per MAC operation for Simba (S), Simba2x (S2x), and Proposed architecture R_AM (AM) and R_MMA (MMA)

processing 3D UNet (as detailed in Section II-A). From Fig. 8§,
compared to Simba, REDRAW dedicates more chip area for
multipliers and adders.

R_MMA

' 26 mm2 59.9mm?

@ D D

= GLB = InputBuff = WeightBuff = OutputBuff = Reg » MAC
Fig. 8. Area Breakdown

Simba
27.5mm?

B. Processing Time

Fig. 9 shows the latency for inferencing an input of 3D
UNet and the contribution of each layer to processing time.
Two instances of Simba and R_MMA (each with 4.4 second
latency) meet the latency requirements for the edge use case.

10000
@
£ 8000 +
$ 6000 +
3

4 4
g 1o =
o =

0 . L e
Simba Simba2X R_AM R_MMA

E]N2E3E4N5 6N7ESEIN]ION]1IN]I2N]I3MI4m15m16
Fig. 9. Time to inference one input of 3D UNet

C. Power and Energy

120

[mSimba m Simba2x mR_AM m R_MMA|

Power (w)
-

B ® S

S o353

[
(=)

(=]

- AN N F N VO N NN = AN N F N O
AT R ]

Avg

Fig. 10. Power consumed while processing each layer of 3D UNet

Fig. 10 shows the power required to process each layer of 3D
UNet. Simba, R_AM, and R_MMA each meet the application’s
power requirements. However, only R_MMA meets the timing
requirements. Scaling the workload across two instances of
Simba creates additional overheads in communications, causing
increased power, thus making Simba2x unattractive for the
presented application.

5.0E+8

__4.0E+8 +

?

3.0E+8 +

&

3 2.0E+8 +

2 . ]
sl B BN BN B
0.0E+0 — - —_— } }

Simba Simba2x R_AM R_MMA

ElE2E3E4RN56M7E8EINI0ON]1IN]I2N]I3m14m15m16

Fig. 11. Comparison of energy required for processing each layer of 3D UNet
on Simba and proposed architecture

Fig. 11 shows Simba and REDRAW’s total and layer-wise
energy consumed for inferencing 3D UNet. SOTA Simba
consumes 30% more energy than R_AM with the same area.
Simba2x consumes 2x energy than R_MMA with 9% area
overhead while Simba consumes 1.5x than R_MMA.

Fig. 7 shows the amortized breakdown of energy spent per
MAC operation at each accelerator component. The proposed
architecture (R_MMA) reduces the multiplication and accumu-
lation energy by 24% compared to Simba due to the multi-cycle
multipliers. Due to the shared usage of input words across
32 MAC units, the input buffer energy is reduced by 3x.
Compared to Simba, there is 4x reduced peripheral circuitry
for the weight buffers. Further, the depth of the output buffer
for each output channel is twice that of Simba, resulting in less
number of weight reads while partial products are generated -
this results in 80% lesser energy at the weight buffer level for
the proposed architecture. Since the number of updates to the
output buffer is reduced by 4x because of the adder tree and
due to the smaller overall size of the output buffer, the output
buffer energy is reduced by 75% compared to Simba. Further,
due to the near-optimal count of memory accesses, the external
DRAM access energy is only 45% of Simba’s external DRAM
access energy.

3E+10

N
el
¥
Uy
(=]
.
t

1E+10 +

DRAM Access

= 1

1024K Simba R_AM R_MMA
Hlayer1 m2 M3 M4 W5 6 N7 H§ HO N]10 M1]1 W12 ®m13

Fig. 12. Accesses to external DRAM compared to 1024K entry optimal system
from Section. VI-C

0




D. Memory Accesses

Fig. 12 shows the access counts to the external DRAM.
Simba has 3.2x more memory accesses while R_MMA has
an additional 15% accesses compared to a 1024K entry near
optimal system.

IX. SENSITIVITY ANALYSIS

1.01
1.005
1
0.995
0.99
0.985
0.98 + + + + +

R.MMA R GMMA R_IMMA R_IOMMA R OMMA R_WMMA

Relative Energy

Fig. 13. Relative energy of variations of REDRAW.

We also perform sensitivity analysis on different variants of
the REDRAW architecture based on the allocation of buffers.
These choices do not lead to higher compute throughput but
affect energy consumption. Further, these changes should not
bring large changes in energy consumption as that might
suggest a technology-dependent architectural benefit. The sen-
sitivity analysis results are provided in Fig. 13, and the variants
are explained in the following subsections.

A. Global Buffer (GLB)

We observe that including a 256KB GLB to REDRAW
(R_GMMA) at the cost of 2mm? area does not reduce the
overall energy. We observed that optimal mapping bypassed
the GLB except for the middle layers (5, 6, and 7).

B. Buffer allocation

Here we consider R_MMA as the baseline design. We
reallocate 256 KB of buffer volume from the baseline to study
the effect on inference energy. In R_IMMA and R_OMMA, the
reallocation is from the weight buffer to the input buffer and
output buffer, respectively. In R_IOMMA, 256KB is reallocated
from the weight buffer to both input and output buffers equally.
Lastly, in R_WMMA, 256KB is reallocated from the output
buffer to the weight buffer. Fig. 13 shows that these variants
have less than 1% change in energy consumption. Further,
we note that Simba2x with 60% more buffer capacity than
R_MMA consumes 78% more energy.

X. CONCLUSION

In this work, we propose a DNN accelerator for inference
of 3D UNet in medical embedded applications. To the best of
our knowledge, this is the first ASIC-based DNN accelerator
for 3D UNet, which processes spatial data - in contrast to
the temporal data in other 3D CNNs. We characterize the
computational aspects of 3D UNet and reduce the external
DRAM access energy by 55%, and internal buffer access energy
by 81% compared to the SOTA accelerator for spatial data,
Simba. Further, we reduce the energy for MAC operation in
the PE by 24%. Further, for lower overall energy and higher
power, compared to Simba, the speedup is increased by 2. The
proposed architecture increases the TOPS per watt by 1.5x.

(1]
(2]

)
=

(4]

[5

—_

[

(=)
=

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

REFERENCES

Y. Chen et al., “A survey of accelerator architectures for deep neural
networks,” Engineering, vol. 6, no. 3, pp. 264-274, 2020.

P. Mattson et al., “Mlperf training benchmark,” arXiv preprint
arXiv:1910.01500, 2019.

S. Mittal et al., “A survey of accelerator architectures for 3d convolution
neural networks,” Journal of Systems Architecture, vol. 115, p. 102041,
2021.

K. Hegde et al., “Morph: Flexible acceleration for 3d cnn-based video
understanding,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018, pp. 933-946.

0. Cicek et al, “3d u-net: learning dense volumetric segmentation
from sparse annotation,” in International conference on medical image
computing and computer-assisted intervention. Springer, 2016, pp. 424—
432.

F. Mentzel et al., “Fast and accurate dose predictions for novel radio-
therapy treatments in heterogeneous phantoms using conditional 3d-unet
generative adversarial networks,” Medical Physics, vol. 49, no. 5, pp.
3389-3404, 2022.

D. Nguyen et al., “3d radiotherapy dose prediction on head and neck can-
cer patients with a hierarchically densely connected u-net deep learning
architecture,” Physics in medicine & Biology, vol. 64, no. 6, p. 065020,
2019.

Reddi et al., “Mlperf inference benchmark,” in 2020 ISCA, 2020.

H. Kwon et al., “Maeri: Enabling flexible dataflow mapping over dnn
accelerators via reconfigurable interconnects,” ACM SIGPLAN Notices,
vol. 53, no. 2, pp. 461-475, 2018.

P. Darbani et al., “Rasht: A partially reconfigurable architecture for
efficient implementation of cnns,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 30, no. 7, pp. 860-868, 2022.
NVIDIA, “3d-unet medical image segmentation for tensorflow:
Nvidia ngc” [Online].  Available: catalog.ngc.nvidia.com/orgs/
nvidia/resources/unet3d_medical_for_tensorflow

F. Xiao et al., “Transdose: a transformer-based unet model for fast and
accurate dose calculation for mr-linacs,” Physics in Medicine & Biology,
2022.

MLCommons, “Mlperf edge inference v2.1 results.” [Online]. Available:
mlcommons.org/en/inference-edge-21/

B. Zimmer et al., “A 0.32-128 tops, scalable multi-chip-module-based
deep neural network inference accelerator with ground-referenced signal-
ing in 16 nm,” IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp.
920-932, 2020.

G. Armeniakos et al., “Hardware approximate techniques for deep neural
network accelerators: A survey,” ACM Computing Surveys (CSUR), 2022.
B. Moons et al., “14.5 envision: A 0.26-to-10tops/w subword-parallel
dynamic-voltage-accuracy-frequency-scalable convolutional neural net-
work processor in 28nm fdsoi,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC). 1EEE, 2017, pp. 246-247.

Z. Yuan et al., “Sticker: A 0.41-62.1 tops/w 8bit neural network processor
with multi-sparsity compatible convolution arrays and online tuning
acceleration for fully connected layers,” in 2018 IEEE symposium on
VLSI circuits. 1EEE, 2018, pp. 33-34.

J. Lee et al., “Unpu: A 50.6 tops/w unified deep neural network accel-
erator with 1b-to-16b fully-variable weight bit-precision,” in 2018 IEEE
International Solid-State Circuits Conference-(ISSCC). 1EEE, 2018, pp.
218-220.

J. Song et al., “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-core
sparsity-aware neural processing unit in 8nm flagship mobile soc,” in
2019 IEEE International Solid-State Circuits Conference-(ISSCC). 1EEE,
2019, pp. 130-132.

P. Chakraborty et al., “Arts: A framework for ai-rooted iot system design
automation,” IEEE Embedded Systems Letters, vol. 14, no. 3, pp. 151-
154, 2022.

A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). 1EEE, 2019, pp. 304-315.
Y. N. Wu et al., “Accelergy: An architecture-level energy estimation
methodology for accelerator designs,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1-8.
N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,” HP
laboratories, vol. 27, p. 28, 2009.



