
Analysis of Conventional, Near-Memory, and
In-Memory DNN Accelerators

Tom Glint
IIT Gandhinagar, India
tom.issac@iitgn.ac.in

Chandan Kumar Jha
DFKI, Germany

chandan.jha@dfki.de

Manu Awasthi
Ashoka University, India

manu.awasthi@ashoka.edu.in

Joycee Mekie
IIT Gandhinagar, India

joycee@iitgn.ac.in
Abstract—Various DNN accelerators based on Conventional

compute Hardware Accelerator (CHA), Near-Data-Processing
(NDP) and Processing-in-Memory (PIM) paradigms have been
proposed to meet the challenges of inferencing Deep Neural
Networks (DNNs). To the best of our knowledge, this work aims to
perform the first quantitative as well as qualitative comparison
among the state-of-the-art accelerators from each digital DNN
accelerator paradigm. Our study provides insights into selecting
the best architecture for a given DNN workload. We have used
workloads of the MLPerf Inference benchmark. We observe that
for Fully Connected Layer (FCL) DNNs, PIM-based accelerator
is 21× and 3× faster than CHA and NDP-based accelerator
respectively. However, NDP is 9× and 2.5× more energy efficient
than CHA and PIM for FCL. For Convolutional Neural Network
(CNN) workloads, CHA is 10% and 5× faster than NDP and
PIM-based accelerator respectively. Further, CHA is 1.5× and
6× more energy efficient than NDP and PIM-based accelerators
respectively.

I. INTRODUCTION

Deep Neural Networks (DNN) have evolved to do image
classification, object detection, language processing, and rec-
ommendation tasks in mobile, edge, and data center applica-
tions [1]. These applications have specific latency and energy
constraints based on the scenarios where these applications are
deployed [2]. Since traditional computers with von Neumann
architecture are not suitable for meeting these constraints due
to the memory wall [3] and the power wall [4], various DNN
accelerator architecture paradigms that perform exact digital
computes have been proposed [5]–[10]. They can be broadly
classified into Conventional Hardware Accelerators (CHA) [8],
[9], Near Data Processors (NDP) [7], [9], [11], and Processing
in Memory (PIM) Accelerators [6], [10] based on [12]. We
conduct an in-depth qualitative and quantitative analysis of the
three DNN accelerators - CHA, PIM, and NDP- for various
DNN workloads to determine which accelerator is suitable
for a given workload. The DNN workloads used here have
two categoric layers - fully connected layer and convolutional
layer. We compare different design metrics such as delay,
energy, etc. For CNN workloads, CHA (Simba) outperforms
NDP (Tetris) and PIM (AiM) in speed and energy. For FCL
workloads like BERT and DLRM, PIM (AiM) is faster than
CHA and NDP, but NDP is more energy efficient than both.

II. STATE-OF-THE-ART ACCELERATORS

To determine the best architecture within each paradigm,
we use the following standard: (i) highest peak performance
(TOPS), (ii) post-layout or hardware realized architectures,
and (iii) comparable output quality results to the traditional
hardware. Based on these criteria, we selected Simba [8],
Tetris [7], and AiM [13] for CHA, NDP, and PIM, respectively.

Simba Simba consists of 16 Processing Elements (PEs) that

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

G
L

B
 (

1
2

8
K

iB
)

S
im

b
a 

C
h
ip

D
D

R
4

 D
R

A
M

Bank

TSVs

DRAM Die

Logic Die

Vault

Col Dec

R
o
w

 D
ec

C
m

d
T

S
V

s

Data

TSVs

Col Dec

R
o
w

 D
ecGlobal 

Dataline

Bank Bank

Inter-bank data bus

R
o
u

te
r

M
em

 C
tr

l

To remote 

vault

G
L

B
 

(1
3
3
K

iB
)

PE

Array

(14 x 14)

Neural Engine – Vault Level

To Local

vault

GLB (2KiB)

16

XXXXXXXX

..

+

BK IO

+

LAT2

24

..

Post

BK #0

(32MB)

256

256

XXXXXXXX

..

+

BK IO

+

LAT

..

Post

BK #15

(32MB)

256

256

256

Fig. 1. Left: AiM Architecture [13]; Top Right: Simba Architecture [8]
(CHA); Bottom Right: Tetris Architecture [7] (NDP)

each have 64 vectorized Multiply-Accumulate (MAC) units,
resulting in a total of 1024 MACs for the whole architecture.
Simba operates at 2 GHz and fetches data from external
main memory for computation. Fig. 1 shows how the PEs are
arranged in Simba Each PE has buffers that store the input
activations, filters, and outputs of DNNs. These buffers help
to reuse the data in DNNs, where different filters convolve
with the same input word, and the same weight word applies
to different input words. This way, the chip can cache the data
needed for processing and reduce the number of accesses to
external memory. Simba’s external memory is a single DDR4
memory with 25GBps bandwidth in our model. However,
accessing external memory consumes a lot of energy.
AiM is based on GDDR6 DRAM and uses PIM paradigm. It
has two dies with 16 banks of memory each. Each bank has
a vector MAC with 16 multipliers that work at 1 GHz and
use BFloat16. The access energy is low because the data is
fetched from the bank and computed in the periphery. The
input activation is moved to the Global Buffer (GLB) and
shared by 16 Vector MACs. Each vector MAC sums up the
products into a single word. The single words from 16 banks
are combined into a new row of data and written back to
any bank. This spatial arrangement is similar to Simba’s PE
organization and minimizes reads and writes. However, the
MAC units in AiM are made with a DRAM process and are
less energy efficient and slower than CMOS chips.
Tetris Tetris combines the benefits of Simba and AiM by
stacking DRAM over a logic chip and connecting them with
Through-Silicon-Vias (TSVs). The TSVs offer high bandwidth
and low energy for data transfer. The logic chip has area and
TDP constraints due to stacking. Tetris has 16 vaults with
3136 MAC units in total that work at 500 MHz to limit power
consumption.

1



III. EXPERIMENTAL SETUP AND RESULTS

We extend Timeloop [2] to model the three SOTA archi-
tectures with hardware values [7], [8], [13]. We use 45nm
model and CACTI for buffers. We optimize mapping for
latency and energy for each architecture and workload. We
get metrics layer by layer for the DNNs. We abbreviate CNN
layers and FCLs of CNN as AN (AlexNet), LN (LeNet), MN
(MobileNet), RN (ResNet), VN (VGG16); fully connected net-
works as BF (BERT), DF (DLRM), LF (LSTM); architectures
as A (AiM), S (Simba), T (Tetris). We calculate weighted
average of all layers for results.
A. Latency

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7

AN LN MN RN VN

L
at

en
cy

 (
n
s)

AiM Simba Tetris

0

0.2

0.4

0.6

0.8

1

AN LN MN RN VN

U
ti

li
za

ti
o

n

(a) (b)
Fig. 2. CNN (a) Latency (b) Utilization

CNN: Fig. 2a and b show average time and MAC utilization
for CNN layers on various architectures. Simba is 5× and 10%
faster than AiM and Tetris for CNNs. The latency gap is due
to three factors: (i) Simba and Tetris can do 4 and 3 MACs in
the time AiM does 1 MAC. (ii) Simba has less bandwidth but
more data reuse with large on-chip buffer. (iii) Simba uses 50%
of its high-frequency MACs for CNN workloads as in Fig. 2b.
Simba is better than Tetris and AiM for latency-sensitive CNN
applications.

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6

AN BF DF LF RN VN

L
at

en
cy

 (
n
s)

AiM Simba Tetris

0
0.1
0.2
0.3
0.4
0.5
0.6

AN BF DF LF RN VN

U
ti

li
za

ti
o

n

(a) (b)
Fig. 3. FCL (a) Latency (b) Utilization

FCL: Fig. 3a and b show average time and MAC utilization
for FCL layers on various architectures. AiM is 21× and 3×
faster than Simba and Tetris for FCL. The latency gap is due
to two factors: (i) FCL has low data reuse potential, i.e., one
compute/data word - causing LLM bandwidth bottleneck in
Simba. Simba has 1% utilization as in Fig 3b. (ii) Tetris has
5% utilization as each vault has low bandwidth (2GBps per
MAC in AiM vs. 0.08GBps per MAC in Tetris). AiM has 50%
utilization as GLB-bank transfer is not possible during MAC
operation. AiM is better than Simba and Tetris for latency-
sensitive FCL applications.
B. Energy

CNN: Fig. 4 and Fig. 5 show average energy and energy
split per computation for CNN on the left. Simba is the most
energy-efficient for CNNs. Simba uses 1.4× and 6.2× less
energy than Tetris and AiM for CNNs. The energy gap is due
to: (i) Simba reduces buffer reads and writes per computation
by sharing input data, accumulating eight products to a single
word, and having a larger accumulation buffer. This lowers
buffer access energy. (ii) Simba has 5× fewer off-chip memory
accesses with efficient shared buffering, but each access is 10×

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

AN LN MN RN VN AN BF DF LF RN VN

CNN FCL

E
n
er

g
y
 (

µ
J)

AiM Simba Tetris

Fig. 4. Average energy for processing each layer of CNN and FCL

1E+0

1E+1

1E+2

1E+3

A S T A S T A S T A S T A S T A S T A S T A S T A S T A S T A S T

AN LN MN RN VN AN BF DF LF RN VN

CNN FCL

E
P

M
 (

p
J/

M
A

C
)

MAC Acc.Buf W.Reg W.Buf I.Buf GLB DRAM

Fig. 5. Log scale: Split up of Energy per Operation for CNN and FCL

more costly. Still, these accesses account for 64% of total
energy per compute in Simba compared to 23% and 30% in
AiM and Tetris. (iii) In AiM, BF16 computation makes MAC
operation energy 4× higher than Simba, and buffer access
energy 10× higher due to constant reading from row buffer
and swapping from small accumulation latch. In AiM, LLM
access energy is 3.5× more than Tetris due to direct reading
of operands from row buffer at each band while Tetris uses
SRAM registers.

FCL: Fig. 4 and Fig. 5 show average energy per layer and
per compute for FCL. Tetris is the most energy-efficient for
FCL. Tetris uses 2.4× and 9.6× less energy than AiM and
Simba. Simba uses 10× more energy to fetch data from main
memory than AiM for FCL. This and higher MAC energy
make Simba use 9.6× more energy than Tetris. In AiM,
LLM access energy is 3.5× less than Tetris. But MAC unit
energy is 10× higher than Tetris due to BFloat multiplication,
which dominates AiM’s energy.Simba and Tetris are better for
energy-sensitive CNNs and FCLs applications, respectively.

IV. CONCLUSION

We perform an in-depth analysis of state-of-the-art DNN
hardware accelerators from Conventional Hardware Accelera-
tor (CHA), Near-Data Processing (NDP), and Processing-in-
Memory (PIM) architecture paradigms to identify the fastest
and the most energy-efficient architecture paradigm for differ-
ent ML workloads from MLPerf benchmark suite. We identi-
fied that CHA (Simba), on average, has 10% and 5× speedup
than NDP (Tetris) and PIM (AiM) for CNN workloads. In
comparison, PIM (AiM) has, on average 21× and 3× speedup
than CHA and PIM for workloads with Fully Connected
Layers (FCL) such as BERT and DLRM. This inversion is due
to the high data reuse potential in CNN workloads, negligible
data reuse potential in FCL, and the limited bandwidth of the
last-level memory in CHA. NDP is the most efficient paradigm
and consumes 2.5× and 9.6× lower energy than PIM and CHA
for FCL. For CNN workloads, CHA is 1.4× and 6.2× more
energy efficient than NDP and PIM.

2



ACKNOWLEDGMENT

This work is supported through grants received from Sci-
ence and Engineering Research Board (SERB), Government
of India, under SERB-CRG grant CRG/2018/005013, SERB-
MATRICS grant MTR/2019/001605, and SERB-SUPRA grant
SPR/2020/000450, and funds received for YFRF Visvesvaraya
PhD fellowship from MEITY and Semiconductor Research
Corporation (SRC) through contracts 2020-IR-3005 and 2020-
IR-2980, and is partially supported through Ashoka University
startup and Huawei Technologies India grants.

REFERENCES

[1] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf training
benchmark,” arXiv preprint arXiv:1910.01500, 2019.

[2] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[4] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: Avoiding
the power wall with low-leakage, stt-mram based computing,” ACM
SIGARCH computer architecture news, vol. 38, no. 3, pp. 371–382,
2010.

[5] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264–274, 2020.

[6] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE
Hot Chips 31 Symposium (HCS). IEEE Computer Society, 2019, pp.
1–24.

[7] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 751–764.

[8] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “A 0.32–128
tops, scalable multi-chip-module-based deep neural network inference
accelerator with ground-referenced signaling in 16 nm,” IEEE Journal
of Solid-State Circuits, vol. 55, no. 4, pp. 920–932, 2020.

[9] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar,
I. Fernandez, M. Sadrosadati, and O. Mutlu, “Damov: A new method-
ology and benchmark suite for evaluating data movement bottlenecks,”
arXiv preprint arXiv:2105.03725, 2021.

[10] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: An experimental
analysis of a real processing-in-memory architecture,” arXiv preprint
arXiv:2105.03814, 2021.

[11] P. Das, A. Joshi, and H. K. Kapoor, “Hydra: A near hybrid memory
accelerator for cnn inference,” in 2022 Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2022, pp. 1017–1022.

[12] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. Vijaykumar, “Newton: A dram-maker’s accelerator-in-memory (aim)
architecture for machine learning,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 372–385.

[13] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho, I. Kim,
C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and J. Cho,
“A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-in-memory
supporting 1tflops mac operation and various activation functions for
deep-learning applications,” in 2022 IEEE International Solid- State
Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

3


	Introduction
	State-of-the-art accelerators
	Experimental Setup and Results
	Latency
	Energy

	Conclusion
	References

