
Performance Analysis of Containerized Applications on Local and Remote Storage

Qiumin Xu∗, Manu Awasthi†, Krishna T. Malladi‡, Janki Bhimani§, Jingpei Yang‡ and Murali Annavaram∗
∗ Ming Hsieh Department of Electrical Engineering, University of Southern California

{qiumin, annavara}@usc.edu
† Department of Computer Science and Engineering, Indian Institute of Technology - Gandhinagar, manua@iitgn.ac.in

‡ Samsung Semiconductor Inc. {k.tej, jingpei.yang}@samsung.com
§ Department of Computer Engineering, Northeastern University, bhimani.j@husky.neu.edu

Abstract—Docker containers are becoming the mainstay for
deploying applications in cloud platforms, having many desir-
able features like ease of deployment, developer friendliness,
and lightweight virtualization. Meanwhile, storage systems
have witnessed tremendous performance boost through recent
innovations in the industry such as Non-Volatile Memory
Express (NVMe) and NVMe Over Fabrics (NVMf) standards.
However, the performance of docker containers on these high-
speed contemporary SSDs has not yet been investigated. In this
paper, we first present a characterization of the performance
impact among a wide variety of the available storage options
for deploying Docker containers and provide the configuration
options to best utilize the high performance SSDs. We then pro-
vide the first of its kind characterization results of a Dockerized
NoSQL database on an NVMe-over-fabrics prototype and show
that its performance matches closely to that of direct attached
storage. Finally, we provide experimental results on scaling
the performance of NVMf to multiple nodes and present the
challenges and projections for future storage system design.

1. Introduction

The last half-a-decade has witnessed a massive shift in
the way that software is developed and deployed. With the
proliferation of data centers, a number of applications have
moved to new hosting models, such as Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) that forgo cumbersome software installations
on individual machines. This freedom has also led to the
development of micro-services and complex distributed ap-
plications. Applications are broken down into smaller silos,
that interact with each other to compose an overall system
that can be deployed across many environments. These
environments can have different OS distributions, kernel
versions, compilers, shared library versions and other de-
pendencies that are required for program execution. Making
sure all environments have the right set of dependencies is
a tough challenge and is often known as the dependency
hell. This can offset the advantages of free mobility and
distributed nature of applications over a large, monolithic
code base.

Containers were proposed as a solution to alleviate
dependency issues [25]. Containers are operating system
constructs for providing the lightweight virtualization. Dif-
ferent from full virtualization which needs to emulate an
entire set of hardware components that it is configured with,
containers allow multiple user space instances to share the
same host OS while allowing for multiple applications to run
in isolation, in parallel, on the same host machine. In this
way, containers can achieve near bare metal performance
by avoiding the overheads in virtualizing entire systems.
Although there are multiple implementations of the con-
tainer technology [6], we choose Docker, which is the most
popular implementation and is heavily used in production.

One of the key components for efficient execution of
any container (or even virtual machine) is the storage hi-
erarchy. Containers rely heavily on the notion of an im-
age. The container image holds the state of the container,
including all the necessary application binaries, input files
and configuration parameters to run an application within
the container. Efficient representation of the image on the
underlying storage is critical for performance. The advent of
SSD-based storage provides new opportunities to improve
the performance of a container. In particular, Non-volatile
memory express (NVMe) [27] is a logical device inter-
face specification for accessing non-volatile storage media
attached via PCI Express (PCIe) bus. Many latest server
platforms have already integrated NVMe interface support,
including Supermicro NVMe Platform, Dell PowerEdge
R920 and NVIDIA DGX-1 [32], [34], [9]. With growing
number of high performance server platforms equipped with
NVMe interface, NVMe SSDs are promising to play an
important role in data centers in the near future. NVMe-
over-fabrics (NVMf) is a new remote storage technique
which allows the high performance NVMe interface to be
connected to RDMA-capable networks. Coupled with the
new Ethernet and InfiniBand speeds which now top out at
100Gb/s, NVMf is promising to radically change storage
over the network [13].

As the world is shifting the bulk of its storage needs
on to high performance SSDs, it is essential to understand
the performance implications of all possible Docker usage
scenarios and the related design space to fully utilize the
high performance storage. However, there have been very

few studies on the performance tradeoffs of Docker on
storage systems, and none of them has covered the multiple
storage options exported by the Docker framework or their
effect on NVMe SSDs. As far as we know, we are the first
paper presenting characterization results on NVMf.

To that end, we make the following contributions:
• We provide a comprehensive characterization of con-

tainer storage drivers to evaluate all possible combina-
tions of persistent and non-persistent drivers for Docker
ecosystem.

• We provide characterization results for an NVMe over
fabrics implementation for various storage options and
show that Dockerized applications can achieve similar
performance between local and remote storage for both
synthetic workloads and real world database.

• We identify the critical resource bottlenecks for scal-
ing NoSQL databases and then optimize the resource
allocation strategy for higher system throughput.

The remainder of the paper is organized as follows.
Section 2 explains the benefit of using containers, NVMe
and NVMf SSDs. Section 3 and Section 4 discuss a wide
variety of the available storage options for deploying Docker
containers. Section 5 describes our evaluation methodology.
Then we present a deep-dive comparative analysis of differ-
ent storage options for local and remote storage. Section 6
analysis the performance and scaling nature of Dockerized
real-world NoSQL databases using the best storage option
obtained from Section 5. We discuss possible system opti-
mizations in Section 7. Section 8 describes the related work
and we conclude in Section 9.

2. Benefits of Containers, NVMe and NVMf

The performance of application could be dictated by the
choice of virtualization technology. Virtual machine virtu-
alizes every resource from the CPU to memory to storage
through a virtual machine manager called hypervisor. A hy-
pervisor is typically run on top of a host OS or sometimes on
top of the native, bare metal hardware. The virtual machine
then runs on top of the hypervisor. Each guest VM will
have its own guest OS, and thus isolated from other guest
machines. However, this feature comes at a performance
cost since there are high overheads involved in virtualizing
the entire systems.

On the other hand, a Docker container comprises just
the application along with other binaries and libraries. As
shown in Figure 1(a), for virtual machine, each virtualized
application includes an entire guest OS (∼ 10s of GB). In
Figure 1(b), a docker container shares the host OS with other
containers but appears isolated through Docker Engine. This
approach is much more portable and efficient.

To leverage Docker and containerization for scaling out
hyper-scale databases on cloud hosts, a fast back-end storage
is desired. Legacy hard-drives that read one block at a time
are becoming a performance bottleneck for data intensive
applications. Built with multiple channels and Flash chips,
SSDs are inherently parallel and are able to provide orders

of magnitude higher internal bandwidth compared to hard
drives. Historically, SSDs conformed to legacy interfaces,
like SATA, SCSI and Serial Attached SCSI (SAS), and
needed a slow clock on-board platform controller hub (PCH)
or Host Bus Adapter (HBA) to communicate with the host
system (Figure 1(a)). Over time, those legacy interfaces have
become a bandwidth bottleneck and limit the performance
of SSDs. The orders of magnitude higher internal bandwidth
capability has driven the transition from SATA to a scalable,
high bandwidth and low-latency I/O interconnect, namely
PCI Express (PCIe) as shown in Figure 1(b). NVMe stan-
dardizes PCIe SSDs and was defined to address inefficiency
of legacy protocols, enable standard drivers and inter-vendor
interoperability. Experimental results show that an NVMe
SSD is able to deliver up to 8.5x performance for running
Cassandra compared to a SATA SSD [37]. However, NVMe
drives are still underutilized, in terms of both bandwidth and
IOPS, when running a single instance of Cassandra without
considering scaling. Scaling in NoSQL databases can be
made easier with containerization. In order to deploy multi-
ple, concurrent instances of NoSQL (or any other datacenter)
application, we just need to deploy multiple instances of the
containerized workload on the server. Scaling applications
to incorporate multiple instances of a workload on the same
machine natively is harder since we have to address multiple
issues like port conflicts and other networking issues etc.
Also distributing resources between applications is made
easier through cgroups, which also helps to scale (and is
much harder to do natively). The latter part of this work
will explore best strategies for deploying and scaling mul-
tiple workload instances on cloud hosts using both Docker
containers and high performance SSDs.

Furthermore, commodity networking has become
cheaper and delivers higher bandwidths and lower latencies,
which has allowed for the rise of Non-Volatile Memory
Express (NVMe) over Fabrics [13]. NVMe over Fabrics
shares the same base architecture and most of the code as the
existing NVMe over PCIe implementation, but allows the
simple implementation of additional fabrics [19]. This end-
to-end NVMe semantics eliminates unnecessary protocol
translations and retains NVMe efficiency and performance
over network fabrics [12]. As illustrated in Figure 1(c),
utilizing the NVMf protocol, the I/O requests are directed to
remote storage server through a high-speed network connec-
tion. NVMe-over-Fabrics is set to deliver fast connectivity
to remote NVMe devices with up to 10 microseconds of
additional latency over a native NVMe device inside a
server [13]. There are two types of fabric transport for
NVMe currently under development: RDMA or Fibre Chan-
nel. Compared to traditional storage area network (SAN) de-
sign, NVMe-over-Fabrics achieves much lower latency and
higher bandwidth [28]. NVMe-over-Fabrics enables high
performance and efficient disaggregated storage, that means
the high performance and low latency storage can be placed
outside of the server, but still achieves the performance rivals
the local attached storage. NVMe-over-Fabrics is promising
to deliver high performance and scalable NoSQL solution
and to improve the flexibility for deploying Docker contain-

Hypervisor
Host Linux

Server

Application
Bins/Libs

Guest Linux

SSD SSD

HBA HBA
PCIe PCIe

SATA

Application
Bins/Libs

Guest Linux

SATA

Virtual Machine

Host Linux
Server

Application
Bins/Libs

Application
Bins/Libs

PCIePCIe

Docker Engine

Docker Container

NVMe SSD NVMe SSD

Host Linux
Server

Application
Bins/Libs

Application
Bins/Libs

NVMe SSD NVMe SSD

Docker Engine

Docker Container

Remote Server

Legacy SAN: high latency,
low BW network

NVMe over Fabrics:low latency,
high BW network

(a) (b) (c)

Figure 1: Comparison between virtualization and storage techniques

ers. We will explore the performance benefits and various
strategies of deploying containerized NoSQL databases over
NVM-over-Fabrics in the last portion of this work.

3. Container Storage Overview

Docker provides application virtualization and sandbox-
ing using a number of known techniques that are present
in the mainline Linux kernel [25]. In this work, we focus
on the mechanisms that make efficient storage in Docker
possible. The primary “executable” unit in Docker is an im-
age. Figure 2a illustrates the concept of Docker images and
layers. Images are immutable files that are snapshots of the
container states. This is similar to VM images, except that
Docker images cannot be modified. Instead, live containers
have a writable layer created on top of the base image. Any
changes to the container state during execution are made
to the writable layer, which is similar to copy-on-write.
Depending on the application usage scenario, sometimes
the changes that are made to the image are only relevant
for a given application execution run. Hence, once the
application run completes, these diff layers are discarded,
which we call as non-persistent storage. The fact that by
default a container loses all of its data when deleted poses a
problem for running applications such as databases, where
persistent storage is essential [17]. Data volume is a way
Docker provides persistent storage to Docker containers, as
a supplement to Docker storage drivers.

3.1. Docker Storage Drivers

Docker containers use Copy-on-Write (CoW) mecha-
nisms to handle storage within the container, namely the
base image and various diff image layers shown in Fig-
ure 2a. Docker stores the data within the container using
file systems that provide CoW capabilities, such as union-
capable file system or device mapper thin provisioning
snapshots. The granularity of difference between Docker
image layers is a file for union file systems and a block
for device mapper.

Union file system (UnionFS) operates many transpar-
ently overlaid file system layers and can combine those files

 Container

 (Writable Layer)

Running Application A

Image Layer 2 (diff 2)

Base Image

 Image Layers (R/O)

Image Layer 3 (diff 3)

Image Layer 1 (diff 1)

(a)

Container Read / Write Operations

Host Backing File system (EXT4, XFS, etc.)

Thin Pool

Aufs, Btrfs,

Overlayfs
Devicemapper

 (Loop-lvm, direct-lvm)
Data Volume

Base Device

NVMe SSDs

Sparse Files

Storage Driver

1 2 3

2.a 2.b

-g option -v option

(b)

Figure 2: Illustration of (a) Docker container image layers
(b) Storage paths in Docker

and directories inside these layers into a single, coherent
file system. Using UnionFS, Docker images can contain
many shared, read-only base image layers and a lightweight
writable layer: only the files that are to be modified are
copied to this additional layer. When a file is modified inside
the Docker container file system, it is searched through
all the file system layers, and then copied to the writable
layer [15]. The write operation is then only applied to
the writable layer. Docker uses this CoW mechanism to
minimize the duplicate data storage, enable fast startup and
reduce overall storage requirements.

Different storage drivers of path ¶ and · in Figure 2b
differ in the manner that they implement unionizing file
system and the CoW mechanism. Aufs (Advanced multi-
layer unification file system) is a fast and reliable unification
file system with features like writable branch balancing.
Btrfs (B-tree file system) [29] is a modern CoW file system
which implements many advanced features for fault toler-
ance, repair and easy administration. Overlayfs is another
union file system which has a simpler design and potentially
faster than Aufs.

Devicemapper is an alternate approach to handling
unionizing file system where the storage driver leverages
the thin provisioning and snapshotting capabilities of the
kernel-based Device Mapper framework. There are two
different configuration modes for a Docker host running

devicemapper storage driver. The default configuration mode
is known as “loop-lvm” shown in path 2.a of Figure 2b. This
uses sparse files to build the thin-provisioned pools used
by storing images and snapshots. However, this mode is
not recommended for production, and using a block device
to directly create the thin pool is preferred. The latter is
known as “direct-lvm”, shown in path 2.b in Figure 2b.
This mechanism uses block devices to create the thin pool.

In some application scenarios, it is imperative that stor-
age modifications made by one container are visible to other
containers. Docker provides a more efficient path to storage
persistence for such scenarios. Apart from disk images diffs
that may be stored and used across invocations, docker
provides persistence through direct manipulation of host
storage. This approach is particularly useful in applications
such as databases where the storage persistence is a key
requirement. Data stored on Docker data volume persists
beyond the lifetime of the container, and can also be shared
and accessed from other containers in this case. For this
purpose Docker Volumes are used. Docker volumes are
directories that exist as normal directories and files on the
host file system. These can be declared at run-time using
the −v flag [26]. The path for persistent data I/O through
Docker volumes is shown on the right side of Figure 2b
(marked ¸).

4. Explore Container Storage Options

In this section, we explore various options for Docker
data storage. Since I/O accesses to a storage device usually
happen through a host file system, it is important to under-
stand the performance implications of the Docker storage
file system, such as UnionFS, and its interaction with the
underlying host file systems. In particular, we are inter-
ested in understanding the performance implications when
the host storage system is built on top of NVMe storage.
Some previous work on the performance characterization
of NVMe devices [37], [3] has highlighted the performance
bottlenecks in the system software stack, particularly the file
system layer preventing applications from fully exploiting
the NVMe SSD performance [35]. But these studies did not
consider the interaction between two different file systems
that are overlaid. In order to understand the performance im-
plications of this Docker-specific scenario, we first explore
the best choice of file system, for both the host file system
as well as for the container’s own file system.

Host File System: The host file system refers to the file
system (ext4, xfs, btrfs, etc.) used to create the Docker’s
storage as shown in Figure 2b. Some care has to be taken
while exploring the choice of file systems are there might
be compatibility issues with Docker storage driver. Not
all Docker storage drivers are compatible with every file
system. For example, Docker’s btrfs driver works only with
btrfs as the host file system. Ext4 and xfs have better
compatibility with many Docker storage drivers such as
overlayFS and Aufs. For devicemapper, the base device’s
file system can be specified as either ext4 or xfs using dm.fs
option. Note that the Data volume approach of providing

persistence does not have layering of two different file
systems since it directly uses the underlying host’s file
system without any unionizing file support.

Utilizing SSDs for Container Storage: Both locally
attached and remote SSDs can be used for storing either
images or data volumes, or both. We describe these config-
urations that we studied in detail for our experiments.

Option 1: Through Docker Filesystem. All the up-
dates to the NVMe SSDs go through the Docker storage
drivers, including Aufs, Btrfs, and Overlayfs, as shown by
path ¶ in Figure 2b. Note that data are not persistent and
when the container is deleted, the files inside it are also
removed from storage.

Option 2: Through Virtual Block Devices. The files
are stored using the Docker devicemapper storage driver,
which is based on Linux Device Mapper volume manager
for mapping physical block devices onto higher-level vir-
tual block devices. As previously mentioned, there are two
configurations, “direct-lvm” and “loop-lvm”, depending on
whether the thin pool is created using block device or sparse
files. Paths 2.a and 2.b in Figure 2b refer to storage paths
using loop-lvm and direct-lvm, respectively. This option also
does not provide persistent storage beyond the lifetime of
Docker container.

Option 3: Through Docker Data Volume. Data stored
on Docker data volume persists beyond the lifetime of the
container, and can also be shared and accessed from other
containers [14]. This data volume provides better disk band-
width and latency characteristics by bypassing the Docker
file system, and is shown as the -v option in path ¸ in
Figure 2b. It also does not incur the overheads of storage
drivers and thin provisioning. The main reason for using
data volumes is data persistence.

All these different storage drivers, host file systems and
storage options create a large variety of combinations for
data storage. The rest of the paper explores the performance
implications of these options.

5. Container Performance Analysis

Before diving into the details of the results, we provide a
brief overview of our experimental system. We used a Xeon
Server that has NVMe capability. We populated that server
with Samsung XS1715 NVMe SSDs. Note that the server
also has a state-of-the-art 40 Gb, RDMA capable ethernet
fabric which uses RoCE protocol. The RDMA capability
was used for measuring remote SSD read performance
which will be described in later sections. The SSD was
configured as a raw block device with xfs as the host
filesystem. Further details on the software and hardware
setup can be found in Table 1.

In the first section of the results, we provide a characteri-
zation of multiple components of the file system stack using
the flexible I/O tester (fio) tool [4]. I/O traffic is synthetically
generated using fio’s asynchronous I/O engine, libaio.
Fio’s O DIRECT flag can be enabled to bypass the page
cache for I/O accesses. Our experiments show that with the
flag left unset, a significant amount of the I/O traffic will

0

200

400

600

800

RR RW

A
ve

ra
ge

 I
O

P
S

K RAW
EXT4
XFS
NVMf

(a) IOPS comparison between file
systems on the device for RR and RW

1000

1500

2000

2500

3000

SR SW

A
ve

ra
ge

 B
W

(M

B
/s

)

RAW
EXT4
XFS

(b) BW comparison between file sys-
tems on the device for SR and SW

0

200

400

600

800

RR RW

A
v

er
a

g
e

 I
O

P
S

K Raw
Aufs
Btrfs
Overlay
NVMf

(c) IOPS comparison between storage
drivers for RR and RW

1000

1500

2000

2500

3000

SR SW

A
ve

ra
ge

 B
W

(M

B
/s

)

Raw
Aufs
Btrfs
Overlay

(d) BW comparison between storage
drivers for SR and SW

0

50

100

150

200

250

1 2 4 8 16 24 28 32 48 64

IO
PS

 o
f

RW

of Jobs

RAW EXT4 XFS
K

(e) Sensitivity of RW performance to
of concurrent jobs

0

200

400

600

800

Default dioread_nolock

IO
P

S
of

 R
R

K

EXT4
(f) Compare EXT4 RR IOPS w/ and
w/o read locks

0

1000

2000

3000

4000

1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k

BW
 (M

B/
s)

 o
f R

R

Block Size

RAW EXT4 Btrfs

(g) Sensitivity of Btrfs RR Band-
width to block size of I/O requests

0

50

100

150

200

Default nodatacow

IO
P

S
of

 R
W

K

Btrfs

(h) Compare Btrfs RW IOPS w/ and
w/o CoW feature

0

200

400

600

800

Hrr Hrw Lrr Lrw

A
ve

ra
ge

 I
O

P
S

K RAW
Aufs
Loop-lvm
NVMf

(i) Performance anomaly of Loop-
lvm for RR and RW

500

1500

2500

3500

Hsr Hsw Lsr LswA
ve

ra
ge

 B
W

 (M
B

/s
)

RAW
Aufs
Loop-lvm

(j) Performance anomaly of Loop-
lvm for SR and SW

0

200

400

600

800

RR RW

A
v
er

a
g
e

 I
O

P
S

K RAW
Direct-lvm
Loop-lvm -v
Aufs -v
Overlay -v
NVMf

(k) Performance of using NVMe SSD
as data volume: RR and RW

1000

1500

2000

2500

3000

SR SW

A
ve

ra
ge

 B
W

(M

B
/s

)

RAW
Direct-lvm
Loop-lvm -v
Aufs -v
Overlay -v

(l) Performance of using NVMe SSD
as data volume: SR and SW

Figure 3: Characterization of the throughput of Docker storage system using assorted combinations of request types (random
read, random write, sequential read and sequential write), file systems (ext4, xfs, Btrfs), storage drivers (Aufs, Btrfs,
Overlayfs, Loop-lvm, Direct-lvm), block sizes, # of concurrent jobs and mount options. H / L indicates High/ Low load.
The yellow circles show the throughput for the corresponding configuration using NVMf.

TABLE 1: Server node configuration.

Processor Intel Xeon E5-2670 v3, 2.3 GHz,
dual socket-12 HT cores

Memory Capacity 64 GB ECC DDR3 R-DIMMs
Storage 2x Samsung XS1715, 1.6 TB [30]

2x Samsung PM1725, 1.6 TB [31]
Network between Clients 2x 10 Gb Gigabit Ethernet NIC
and Application Server

Network between Application 4x 40Gb Gigabit Ethernet NIC
and Target Storage Server RDMA capable, RoCE protocol

Kernel Version Linux 4.6.0
Docker Version 1.11.2

Cassandra Version 2.1

hit in the DRAM, rather than going further down to the I/O
subsystem. To ensure the measurement of disk performance
(as opposed to including confounding factors like DRAM
caching effects) we bypass the page cache by setting the
O DIRECT flag.

To quantify the performance impact of different file
systems and Docker storage options, we first run precon-
ditioning tests on the disk for two to four hours until it
reaches the steady state, and then run the same set of fio
experiments over a 5GB file, for ten minutes each, from
within the container as well as natively on the host, and
then report the steady state performance.

Unless otherwise indicated, we use RR/RW as acronyms
for random reads/writes and SR/SW for sequential
reads/writes under high load (32 jobs, 32 queue depth
configured within the fio tool). 4 KB and 128 KB are used as
the default block sizes for random and sequential workloads,
respectively.

We report the IOPS for random workloads and band-
width for sequential I/O operations, each run in isolation.
Later in Section 6, we will further characterize the perfor-
mance of mixed random and sequential workloads using real
world containerized applications.

5.1. Choice of Host FS on Performance

We experimented with two major and popular file sys-
tems for the host file system, ext4 and xfs. Figure 3a and
Figure 3b provide the comparison of the two file systems
relative to the performance of the raw block device (RAW in
Figure 3a and Figure 3a). We observed that the performance
of file I/O using xfs closely resembles that of the raw block
device for both random and sequential workloads. The only
instance where xfs fares worse than the block device is for
purely random writes. As these experiments are carried out
with a large number of parallel jobs (32), we further vary the
number of parallel jobs and repeat the experiments. We can
clearly see in Figure 3e that the performance of xfs falls off
the cliff when there are more than 24 jobs. Meanwhile, the
IOPS of ext4 stays about the same regardless of the number
of parallel jobs. Based on our analysis of the file systems we
believe that xfs suffers a steep loss in performance due to
lock contention in exclusive locking which is used by extent
lock up and write checks. This phenomenon significantly
degrades the write performance of xfs as the thread count
grows, however, could be eliminated by using a shared
lock in xfs get blocks() function [10]. Ext4 uses exclusive
locking as well but does not degrade like xfs due to its
reliance on a finer grain locking with different lock types.

As a result, ext4 performs close to rated specifications
for all workloads, except for random reads. In this case, it
performs 25% worse than both the raw block device as well
as xfs owing to the latter’s support for very high throughput
file I/O using large, parallel I/O requests. Xfs also allows
multiple processes to read a file at once while having
only one centralized resource: the transaction log. All other
resources in the file system are made independent either
across allocation groups or across individual inodes [33].
Therefore, reads under high thread count continue to scale
well. In contrast, ext4 requires mutex locks even for read
operations. As we can see in Figure 3f, if we force removing
the mutex locks by enabling the dioread nolock option for
ext4, its random read performance immediately jumps up
by 25%.

Therefore, if a workload is random read intensive then
xfs may be a better choice for the host file system. Other-
wise, if there are a large number of concurrent random write
operations, it may be better to choose ext4 to avoid write
lock contention in xfs. For workloads mainly consisting of
sequential operations, either xfs or ext4 would work well.
Since xfs performs well for the majority of our tests, we use
it as the default host file system for the rest of the paper.

5.2. Performance Comparison of Different Docker
Storage Drivers

Next, we compare the performance implications of the
different storage drivers offered by the Docker ecosystem.
Data stored though Docker storage drivers live and die with
the containers. Therefore, this ephemeral storage volume is
usually used in stateless applications that do not record data
generated in one session for use in the next session with that

user. For these experiments, we created a Docker container
that is configured with a specific storage driver used in that
experiment. We then did file read and write operations from
within the container. In these experiments, we vary the stor-
age driver in use while keeping the backend device the same
– Samsung XS1715 NVMe SSD. The NVMe device was
configured with xfs file system (except for the btrfs driver)
along with the specific Docker storage driver. Figure 3c and
Figure 3d present the results of aufs, btrfs and overlayfs
compared to the raw block device performance. We find that
aufs and overlay drivers can achieve performance similar to
the raw block device for most cases under consideration.
Btrfs, on the other hand, performs much worse than all the
other options for random workloads.

The performance of btrfs is much lower for small block
size read and write operations. Figure 3g shows a compari-
son among btrfs, ext4 and raw performance when changing
the block size. We observed that btrfs achieves maximal ran-
dom read performance when block size increased to 32KB.
Some previous performance studies [36] have attributed it
to the fact that btrfs operations have to read file extents
before reading file data, adding another level of indirection
and hence leading to performance loss.

For random writes, the performance degradation is
mostly due to the CoW overheads. As shown in Figure 3h,
when we disable the CoW feature of btrfs, the random write
performance of btrfs increased by 5X.

Our second important observation is the fact that in order
to achieve performance closer to the rated device perfor-
mance, deterministically, it is better to use the data volume
rather than the storage driver. As seen in Figure 3c and
Figure 3d, the performance experienced by an application
is dependent on the choice of the storage driver. However,
in the case of the Docker volume, since the I/O operations
are independent of the choice of the storage driver, the
performance is closer to that of the raw block device.
But as we stated earlier such an approach can potentially
compromise repeatability and portability since the writes are
persistent across container invocations.

One of the interesting observations is that using loop-
lvm backend leads to anomaly performance, as shown in
Figure 3i and Figure 3j. In this experiment, we compare
the performance of the loop-lvm storage driver to (i) raw
block device performance, and (ii) the performance of the
aufs backend. Both aufs and loop-lvm experiments are done
using Docker -g option. In certain cases, we notice that the
performance of the loop-lvm storage backend is significantly
higher, even higher than that of the raw block device.
Typically, for random read under low load (for FIO: one job,
one queue depth), the loop-lvm reports 1.4x the IOPS of a
RAW block device, and 7x that of aufs. The performance
anomaly under low load implies that the latency of loop-
lvm experiments is even lower than that of the RAW block
device and much lower than that of aufs. This is due to the
fact that dm-loop does not respect the O DIRECT flag [16],
which we used for all our experiments. Hence, almost all
the data is getting read from or written to DRAM, providing
the illusion of better device performance.

5.3. Data Volume Performance

In order to test the performance implications of the data
volumes, which allows for data persistence (by default), we
tried a number of different experiments. The data file used
as the targets for fio is stored on the NVMe drive and is
accessed using the default data volume, while the images are
stored on the boot drive using the specified storage backend.
In these experiments, we again vary the storage backend
while carrying out I/O intensive operations on the Docker
volume. Using these experiments, we wanted to gauge the
effects of the choice of the storage driver on the performance
of operations for persistent data through the data volume.
This setup is also described as Option 3 in Section 4.

Figure 3k and Figure 3l present the results of these
experiments. For the most part, the performance of the
persistent storage operations through the data volume are
independent of the choice of the storage driver. As expected,
the performance of I/O operations matches that of xfs for
the host machine in the filesystem choice experiments as
represented in Figure 3a and Figure 3b. Direct-lvm, on
the other hand, is based on lvm, device mapper and the
dm-thinp kernel module which introduce additional code
path and overheads which are not suitable for I/O intensive
applications.

5.4. Choice of Storage Configuration for NVMf

Finally, we measured the performance impacts of NVMf.
Recall that NVMf allows one server to read data stored on
another server through RDMA. For this experiment, we used
two Xeon servers and launched the container on one server
while the storage was associated with the remote machine.
Then the container would have to use NVMf interface to
read remote data. We show that there is little performance
difference between NVMe and direct attached storage for
the same Docker storage configurations. The yellow circles
in Figure 3 show the throughput of random requests for all
the storage configurations using NVMf. The performance
characteristics for random requests closely matches with
directly attached SSDs, especially in high I/O request load
situation. Similar to directly attached SSDs, the data volume
option (−v) shows the best performance for NVMf as
well. We used data volume option to characterize real-world
applications.

5.5. Latency Breakdown

Figure 4 shows the latency breakdown of various storage
configurations. slat denotes the time spent by the user appli-
cation to transfer control to kernel level syscall. Specifically,
it is the time spent from the time the application initiates
an I/O request to the time the io submit() system call
is called by the asynchronous I/O library libaio. slat
reflects the application-level overhead in the entire I/O path.
clat is the time taken by the I/O request from kernel level
syscall io submit() to completion, including the time spent

0

50

100

150

200

250

DAS NVMf

L
at

en
cy

 B
re

ak
do

w
n

fo
r

L
ow

L
oa

d
R

R
(u

s)

clat slat

(a)

0
1000
2000
3000
4000
5000
6000

DAS NVMf

L
at

en
cy

 B
re

ak
do

w
n

fo
r

H
ig

h
L

oa
d

R
R

(u
s)

clat slat

(b)

Figure 4: Latency breakdown of random read operations
of directly attached NVMe SSDs (DAS) vs. NVMe-over-
Fabrics (NVMf) using assorted storage configurations: (a)
Low load (b) High Load

in file systems, drivers and device. clat takes up a substantial
proportion of the total access latency of I/O requests.

Figure 4(a) shows I/O request latency when there’s
typically one job issuing one request at a time (low load).
Since there’s negligible queueing in the storage subsystem
under low load, the latency is close to the raw device latency.
slat takes up only a small portion of the total I/O latency
and reflects a slight increase between DAS and NVMf -
9.7% for directly attached SSDs and 10.1% for NVMf.
Compared to the similar experiment for directly attached
storage (DAS) for low load cases, the extra network latency
in NVMf results in a 53.3% increase in clat and 54.0% of
the total I/O request latency on average.

We further compared the I/O request latency of 16
parallel jobs concurrently issuing I/O requests (high load)
in Figure 4(b). We observed significant queuing time spent
in the storage subsystem that leads to an overall 20x longer
latency for direct attached storage and 12x longer latency
for NVMf compared to low load cases. The latency increase
is typically longer when using Btrfs, direct-lvm and loop-
lvm compared to using the other file system options, which
suggests that the former filesystems are sub optimal for
sustaining high bandwidth needs in NVMe SSDs. On the
other hand, the extra network communication latency in
NVMf becomes less than 2% compared to the much longer
queueing overhead and the application overhead slat is less
than 1%.

In low load experiments, loop-lvm option shows ex-
tremely low latency comparing to other options in both
DAS and NVMf experiments. As mentioned before, loop-
lvm doesn’t respect the O DIRECT flag, and as a result,

YCSB Clients
Application

Server

NVMf Target

Storage Server

10Gbe 40Gbe

Cassandra +

Docker

Figure 5: Experimental setup of NVMe-over-Fabrics proto-
type and Cassandra Experiments

most of the I/O requests hit in the DRAM. Since those
requests complete much faster than the requests going to the
SSDs, the average clat drops significantly. For understanding
the benefits of different storage options, it is imperative
to enable the O DIRECT flag to avoid the case that most
of the requests hit in the DRAM. Hence, we caution that
loop-lvm results are not a true measurement of I/O system
performance due to memory buffering interference.

6. Performance Evaluation and Optimization
of Dockerized DBMS

Next, we perform detailed characterization of how much
performance a containerized NoSQL database can maxi-
mally deliver over local and remote high performance SSDs.
We compare and analyze the scaling nature of multiple
concurrent Cassandra containers using the best Docker stor-
age options obtained from previous FIO experiments. We
conduct a deep-dive bottleneck analysis to identify the crit-
ical resources limiting the performance scaling using Linux
control groups. Based on the analysis, we propose optimized
resource allocation mechanisms among the servers in the
same rack to deliver better performance.

We experimented with three server nodes, as is shown in
Figure 5, each has a dual-socket Intel Xeon E5 server, sup-
porting 48 hyper-threading CPU threads. We use two nodes
for Cassandra client and server configuration, with the client
node driving traffic to the application server over a 10Gb
ethernet link. The third node is configured as an NVMf
target storage server. In these experiments, we compare two
main storage scenarios. In the first case, the data is stored on
an NVMe SSD that is directly attached to the server. In the
second case, a third node serves as an NVMf ‘Target’. The
target storage server exports the Samsung PM1725 NVMe
SSDs on to the server over a state-of-the-art 40 Gb, RDMA
capable ethernet fabric and uses the RoCE protocol. In both
cases, we configure the raw block device (direct attached or
remote) with xfs as the host filesystem. Further details on
the software and hardware setup can be found in Table 1.

For these experiments, we use Cassandra [11], which
is a popular open-source NoSQL data store that will (the-
oretically) scale linearly to the number of nodes in the
cluster. We use YCSB [8] to drive the Cassandra database.
For each container, we loaded 100 million/100GB records
in the database. We have 16 client threads making 10
million queries to each Cassandra server. We measure the
performance of two different workloads, with two common

combinations of read and write operation mix: workload
A, which contains 50% read and 50% update operations in
Zipfian distribution; workload D, which contains 95% read
and 5% insert operations in the uniform distribution.

6.1. Analysis the Cassandra Container Perfor-
mance

We did an extensive comparison of all system metrics,
including aggregated throughput (total throughput of all the
concurrent containers), average latency, tail latency, CPU
utilization and disk bandwidth, to perform a systematic
analysis of the performance and scalability of multiple
Cassandra instances between (i) a direct attached NVMe
drive, and (ii) an NVMe-over-fabrics (NVMf) prototype
implementation for two workloads on the same server.

We make several important observations from these ex-
periments. First, NVMf storage achieved throughput within
6% to 12% of direct attached SSD and incurred only 2%
to 15% (75 us to 970 us) extra latency overhead, as shown
in Figure 6a and Figure 6b. Figure 6c shows the average
disk bandwidth for one disk when running two different
workloads. We can see NVMf achieves peak disk bandwidth
of ∼ 2800MB/s, which is reasonably close to peak disk
bandwidth (∼ 3000MB/s) of direct attached SSD. NVMf
benefits from high-speed ethernet and eliminates unnec-
essary protocol translations, therefore it sustains the high
throughput of NVMe SSDs.

Secondly, the aggregate throughput of all Cassandra
instances first increases, peaks at about four instances and
then decreases from that point on. This trend is observed
for both DAS and NVMf cases. This also correlates with
the fact that the disk bandwidth starts to saturate after four
instances, as shown in Figure 6c. We also observe the time
the CPU spends waiting for I/O requests (marked by wait%)
in Figure 6c significantly increases after the disk bandwidth
saturates due to increased queueing delays.

Moreover, as we scale the number of instances on the
server, we observe a corresponding increase in client side
latency, as shown in Figure 6b. However, the client side 99th

percentile latency increases much faster than the average
latency. Note that, these observations remain the same,
both in trends as well as absolute numbers for the NVMf
implementation for both workload A and workload D.

Finally, comparing the two different workloads, work-
load A exhibits higher throughput as well as a higher
increase in tail latency than workload D. To explain this,
we need to first understand how Cassandra stores its data.
Cassandra writes (inserts and updates) are stored first in
a DRAM resident cache called memtable, and when the
memtable size exceeds a certain threshold, the data is flushed
into a disk-resident data structure called SSTables. Since
Cassandra does not update data in place, the updated data
will be written to a new SSTable. Reads miss in memtable
often need to fetch data from multiple SSTables on the disk,
which have longer data paths than writes. Therefore, the
read latency is higher than write latency in Cassandra and
read requests are more limited by disk bandwidth. Recall

0

1

2

3

4

1 2 3 4 5 6 7 8

R
el

at
iv

e
T

P
S

of Cassandra Instances

DAS_A NVMf_A DAS_D NVMf_D

(a) Throughput

0

2

4

6

8

1 2 3 4 5 6 7 8N
or

m
al

iz
ed

 L
at

en
cy

of Cassandra Instances

DAS_A NVMf_A DAS_D NVMf_D

(b) Average read latency

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

1 2 3 4 5 6 7 8

C
P

U
U

ti
l.

R
el

at
iv

e
B

W

of Cassandra Instances

user% wait% sys% DAS_A
NVMf_A DAS_D NVMf_D

(c) Disk BW

0

5

10

15

20

1 2 3 4 5 6 7 8

R
el

at
iv

e
p

99
L

at
en

cy

of Cassandra Instances

DAS_A NVMf_A DAS_D NVMf_D

(d) p99 latency of read operations

Figure 6: Performance comparison of concurrent Cassandra containers between direct attached NVMe SSD and NVMf for
workload A and workload D. P99 latencies of workload A are normalized to its own single container p99 latency, all others
are normalized to the corresponding DAS workload D single container results.

0

10000

20000

30000

40000

50000

0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (o

ps
/se

c)

of Cassandra Containers

CPU MEM CPU+MEM BW All Uncontrolled

(a) Throughput

0

1000

2000

3000

0 1 2 3 4 5 6 7 8 9

Ba
nd

wi
dt

h
(M

B/
se

c)

of Cassandra Containers

CPU MEM CPU+MEM BW All Uncontrolled

(b) Bandwidth

0

10

20

30

40

50

N
or

m
al

iz
ed

 p
99

La
te

nc
y

(c) p99 latency

Figure 7: Performance comparison of a scaling number of concurrent Cassandra containers with various resource constraints

that workload A has 50% reads and 50% updates, while
workload D has 95% reads and 5% updates. Therefore, given
the same disk bandwidth, workload D achieves lower overall
throughput.

To improve the read performance, Cassandra implements
SSTable compaction to merge multiple SSTables into single
SSTable. We observe more updates lead to frequent SSTable
compactions and more java garbage collection. Those activ-
ities delay read requests intermittently, which we believe,
lead to the higher read tail latency increase of workload A.

6.2. Analysis the Bottleneck for Scaling Up

In this section, we focus on identifying the performance
bottlenecks while scaling the number of concurrent Cassan-
dra containers on high performance NVMe SSDs. For this
purpose, we use Linux Control Groups, a.k.a, Cgroups [24]
to limit and isolate the resource usage (CPU, memory and
disk bandwidth) of each container. We then compare the
performance delta between constrained resource usage and
unconstrained usage and analyze the reasons that disallow
the aggregate throughput of Cassandra containers from con-
tinuing to scale up.

We collect and compare the throughput between differ-
ent resource control configurations: single resource control
(labeled CPU, MEM, BW in Figure 7a), multiple resource
control (labeled CPU+MEM, ALL) and no resource control
(labeled Uncontrolled). We divided the total CPU cores by

maximum number of containers (eight in this experiment)
and allocate the number of CPU cores to each container. A
similar process is done for memory and disk bandwidth. We
allocate 6GB memory for each container. Table 2 lists the
resources allocated for each container for different resource
control configurations in Figure 7a: if we don’t control that
type of resource, and all the instances can use the up to the
maximum number of total resources on demand, we leave
the corresponding cell empty. In the rest of the paper, we use
CPU, MEM, BW, etc. to refer to the corresponding resource
control configurations for simplicity.

TABLE 2: Cgroups Configurations

Abbr. CPU Cores MEM Disk Bandwidth
CPU 6 - -
MEM - 6GB -

CPU+MEM 6 6GB -
BW - - 400MB/s
ALL 6 6GB 400MB/s

Across all single resource control configurations that we
investigated, MEM, which assigns a fixed (6GB) memory to
each additional container, has the most significant impact on
throughput. Different from the performance behavior of the
CPU, BW or Uncontrolled, the throughput of MEM stays
around 20K operations per second and doesn’t increase as
we increase the number of concurrently executing contain-
ers. Typically when there are four concurrent containers, the
aggregate throughput of MEM is much lower than that of

0

2

4

6

0 1 2 3 4 5 6 7 8 9

R
el

at
iv

e
T

hr
ou

gh
pu

t

of Cassandra Containers

32GB DRAM, 1 SSD 64GB DRAM, 1 SSD
64GB DRAM, 2 SSDs

(a) Throughput

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9
R

el
at

iv
e

B
an

dw
id

th

of Cassandra Containers

32GB DRAM, 1 SSD 64GB DRAM, 1 SSD
64GB DRAM, 2 SSDs

(b) Bandwidth

80%

100%

120%

140%

160%

180%

R
el

at
iv

e
T

hr
ou

gh
pu

t

(c) Optimal Concurrent Instances

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

1 NVMf 2NVMf 2 Nodes

CPU Util. on Target Machine

(d) CPU Util.

Figure 8: Performance results of various resource allocation strategies

CPU, BW or Uncontrolled: MEM decreases the aggregate
throughput of Uncontrolled by 47%, while BW keeps the
same with Uncontrolled; moreover, CPU even increases the
aggregated throughput by 13%. Furthermore, it is surprising
that controlling BW using cgroups doesn’t seem to have
much performance impact.

To understand these performance behaviors, we further
measured the corresponding disk bandwidth. In Figure 7b,
the line marked with light blue squares show the average
disk bandwidth consumed having different number of con-
current containers without any resource control. In compar-
ison, the MEM line (marked with red diamond) is much
higher. This indicates that higher BW is consumed as a result
of reduced memory capacity. The lower memory capacity
leads to reduced memtable size, which in turn, increases
the read miss rate and frequency to access the disks. There-
fore, the throughput reached a bandwidth bottleneck sooner
because of fewer DRAM capacity is allocated.

On the other hand, at 4 instances, we observe controlling
only CPU resources increased the measured disk bandwidth
only slightly. Correspondingly, the overall throughput also
increases slightly. Since in the CPU control, we assign
certain CPUs to particular Cassandra instances, rather than
assigning them dynamically. We believe this could improve
the thread affinity and reduce CPU contention, and therefore
lead to higher throughput. Note that in uncontrolled case,
CPUs are underutilized until 4 instances, this is possibly
why the benefits start to show up only at that point.

When both CPU and MEM are controlled, the per-
formance is similar to MEM, as disk bandwidth is the
main bottleneck in both cases. If we continue to decrease
bandwidth, we observe that performance is controlled by
bandwidth and furthermore it linearly decreases with a linear
reduction of total bandwidth (black dot line labeled ALL).

Figure 7c compares the 99th percentile latency of vari-
ous control options. Among all the resource control combi-
nations, none of the mechanisms reduced the tail latency
significantly. In the worst case, the 99th latency could
increase by more than three times when controlling all the
resources. There’s only slight reduction of tail latency by
controlling MEM and CPU+MEM, which instead sacrifices
throughput significantly. Therefore, there is not one optimal
resource control strategy can both achieve higher throughput

as well as reduce tail latency.
In summary, memory size and disk bandwidth are main

bottlenecks for scaling Cassandra instances. Over packing
Cassandra instances on the same server will severely de-
crease overall system throughput mainly due to the fol-
lowing two reasons: (i) decreased memory capacity and
disk bandwidth per instance (ii) increased disk bandwidth
requirement due to reduced memory capacity. The optimal
number of instances assigned on one server should balance
the memory and bandwidth requirement.

6.3. Optimize Container Assignment through
NVMf

Based on our previous analysis, we discuss how different
container assignment and resource allocation strategies can
impact the aggregate throughput of Cassandra containers.

Recall in Figure 6a, the experiment results indicate that
assigning four concurrent Cassandra instances to one appli-
cation server achieves best aggregate throughput. However,
it is not clear whether and how this number will change
across multiple systems with varying DRAM capacity and
storage bandwidth. To classify the effects of these param-
eters, we conducted multiple experiments on servers with
varying DRAM capacity and disk bandwidths by using
multiple disks. All the other system settings stay the same.

Figure 8a shows how optimal assignments change with
DRAM capacity and disk bandwidth. For one experiment,
we remove half of the DRAM on the application server, so
that total DRAM capacity reduced from 64GB to 32GB. For
another experiment, we add another PM1725 NVMe SSD
to the system, so that the total disk bandwidth doubled.

We make three important observations from these ex-
periments. Firstly, in all the experiments, there exists an
optimal number of concurrent instances which achieved
significantly higher throughput than others. Secondly, the
optimal number of concurrent containers increases with
more DRAM size and disk bandwidth to the server. Finally,
compared to Figure 8b, we note that the container numbers
that maximizes disk bandwidth may not achieve maximal
system throughput. This motivates us to consider resource
allocation (e.g. how many disk bandwidth to allocate to each

server) and container assignment (e.g. how many containers
will assign to each server) simultaneously to achieve best
system throughput.

Here we discuss some initial results using a simple
optimization strategy through NVMf. We consider a sce-
nario that there are two application servers with the same
configurations listed in Table 1 and there are two PM1725
disks. In order to achieve the maximal throughput, we
conducted multiple experiments to compare the following
container assignment and disk allocation choices:

¶ Plug two disks to the same server and continue
to increase the number of Cassandra instances until the
bandwidth saturates. This results in 6 containers on one
server, marked with (6) DAS in Figure 8c. · Plug two disks
to the same server and continue to increase the number of
Cassandra instances until the maximum throughput peaks
and starts to decrease. This results in 5 containers in one
server, marked with (5) DAS. ¸ Plug one disk to each
server and assign containers until saturating the throughput
for each server. This results in 6 containers in each server,
marked with (6,6) DAS. ¹ Plug one disk to each server and
assign the number of containers that maximize the through-
put. This results in 4 containers in each server, marked
with (4,4) DAS, which improved the throughput by 51%.
However, one of the challenges is that we don’t know the
throughput is maximal until we assign one more container to
the server, and the bandwidth decreases. When this happens,
without NVMf, we can’t schedule the container off the
server, since migrating the data from a DAS disk to the
another disk on the other server have a high cost. ºUsing
NVMf-over-Fabrics solves this problem. Since the storage is
remote, we only need to initiate a new RDMA connection.
We measured the throughput of using 4 containers on each
application server and both of the application servers are
connected to the same NVMf storage server, with two
NVMf disks, marked with (4,4) NVMf. We can see the
throughput is very close to (4,4) DAS and also close to the
optimal throughput for 2 server NVMf system, marked with
(3,3) NVMf. Compared with the first strategy, which assigns
two disks to the same server and then maximizes the disk
bandwidth, the proposed (4,4) NVMf strategy achieved 49%
increase in aggregated system throughput.

7. Discussion

Distributing the computation among server nodes and
connecting those server nodes to a central storage system is
a promising design choice. Here we discuss the scalability
of these systems. We show that the CPU utilization on the
target machine as low as 2.4% for two servers connecting
to two NVMf SSDs in Figure 8d. If we assume the uti-
lization is increased linearly, we will be able to support up
to 50 concurrent NVMf connections until the server CPU
resources are exhausted.

We made an observation that the p99 latency increases
exponentially when increasing concurrent containers. And
it is a problem since it delays the average service response
time in when the service needs to make multiple queries

in large-scale data centers. One possible way to solve it
could be to move the container with high p99 latency to
another server with more resources. NVMe-over-Fabrics can
significantly reduce the cost of offloading the containers.

8. Related Work

Container Performance: Lightweight virtualization
mechanisms like Docker have become commonplace in the
last couple of years. However, despite this popularity, there
is very little work that has been done to understand the
performance implications of the various elements that make
up containerized applications.

Some recent studies have characterized the performance
implications of containerized applications. Felter et al [18]
compared the performance difference between virtualized
and containerized workloads and found that Dockerized
applications introduced little performance overhead as com-
pared to virtualized ones, and were able to match native,
bare-metal performance for CPU and memory intensive
workload. Furthermore, for containerized applications, they
also characterized the memory, CPU and network over-
heads of both containerized and Dockerized applications.
A preliminary investigation of the storage stack overheads
was also provided, but it was evaluated using only the
default storage configurations on an HDD-based SAN de-
vice. Agarwal et al. [1] provide preliminary, experimental
characterization of differences in startup times and memory
footprints of VMs and containers and conclude that the
latter outperforms the former by 6× - 60×, depending on
the workload. Bhimani et al. [7] characterizes I/O intensive
applications inside the Docker. In this work, we first present
a deep-dive analysis of various Docker storage options and
then explore the best practices to scale NoSQL databases
using both local and remote high performance storage.

NVMe Storage: Recently, some work has been done
in understanding the performance advantages of high per-
formance NVMe devices. Xu et al. [37] provide a detailed
characterization of NVMe devices as well as that of the
associated system software stack. Furthermore, this work
expands on the system-level characterization of data center
applications carried out in [3], especially for NVMe SSDs.
Although, none of these works perform comprehensive char-
acterization of containerized applications from a high per-
formance storage perspective. In one of the first works of its
kind, Ahn et al. [2] design and implement a cgroups based
mechanism to allow for proportional I/O sharing among
multiple containerized applications for NVMe SSDs.

High Performance Networking: Several user space
techniques to achieve high performance networking have
been studied, such as IX [5], mTCP [21], Sandstorm [23]
and OpenOnload [20]. Ana et al. proposed ReFlex [22], a
software-based system for remote Flash access, to provide
high throughput and low latency access to the remote storage
system. While our studies shows that NVMe-over-Fabrics
can achieve similar bare-metal performance for remote stor-
age, we further performed competitive analysis for the con-
tainerized workloads on local and remote storage.

9. Conclusion

In this paper, we provide an extensive characterization
of Docker storage drivers using state-of-art NVMe SSDs
and NVMe-over-Fabrics. We showed that containerized ap-
plications can achieve similar performance between local
and remote storage for both synthetic workloads and read
world NoSQL database with multiple use cases. We further
identified the critical resource bottlenecks for scaling con-
tainerized NoSQL databases, and showed there is not one
optimal resource control strategy can both achieve higher
throughput as well as reduced tail latency. Finally, we dis-
cussed container assignment and resource allocation strategy
using NVMf for optimal system throughput.

Acknowledgment

We thank our paper shepherd, Thomas Schwarz, for his
advice in producing the final version of this paper, as well as
the anonymous reviewers for their valuable comments. We
also thank Harry Li (Samsung) for setting up the NVMe-
over-Fabrics experiment environment and Vijay Balakrish-
nan (Samsung) for his support on this work.

References

[1] K. Agarwal, B. Jain, and D. E. Porter, “Containing the Hype,” in
APSys, 2015.

[2] S. Ahn, K. La, and J. Kim, “Improving I/O Resource Sharing of
Linux Cgroup for NVMe SSDs on Multi-core Systems,” in Proc. of
HotStorage, 2016.

[3] M. Awasthi, T. Suri, Z. Guz, A. Shayesteh, M. Ghosh, and V. Bal-
akrishnan, “System-level characterization of datacenter applications,”
in Proc. of ICPE, 2015.

[4] J. Axboe, “Flexible I/O Tester,” https://github.com/axboe/fio, 2016.

[5] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” in Proc. of OSDI, 2014.

[6] D. Bernstein, “Containers and Cloud: From LXC to Docker to Ku-
bernetes,” IEEE Cloud Computing, vol. 1, no. 3, 2014.

[7] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Panduran-
gan, and V. Balakrishnan, “Understanding performance of I/O inten-
sive containerized applications for NVMe SSDs,” in International
Performance Computing and Communications Conference (IPCCC),
Dec 2016.

[8] C. F. Brian, S. Adam, T. Erwin, R. Raghu, and S. Russell, “Bench-
marking Cloud Serving Systems with YCSB,” in Proceedings of
SoCC, 2010.

[9] C. Bryant, “Dell’s PE R920 Big Data Servers Get
Samsung’s NVMe SSDs,” http://www.tomsitpro.com/articles/
dell-poweredge-r920-ssd-nvme-samsung,1-1818.html, 2014.

[10] D. Chinner, “Concurrent direct IO write in xfs,” http://oss.sgi.com/
archives/xfs/2012-02/msg00219.html/, 2012.

[11] Datastax, “Companies using NoSQL Apache Cassandra,” http://
planetcassandra.org/companies/, 2010.

[12] J. M. Dave Minturn, “Under the Hood with NVMe over Fabrics,”
http://www.snia.org/sites/default/files/ESF/NVMe Under Hood 12
15 Final2.pdf, 2015.

[13] R. Davis, “NVMe Over Fabrics will radically change storage and
networking,” in Storage Visions, 2016.

[14] Docker, “Manage data in containers,” https://docs.docker.com/engine/
tutorials/dockervolumes/, 2016.

[15] ——, “Understand images, containers, and storage drivers,”
https://docs.docker.com/engine/userguide/storagedriver/
imagesandcontainers/, 2016.

[16] J. Eder, “Comprehensive Overview of Storage Scalability
in Docker,” http://developers.redhat.com/blog/2014/09/30/
overview-storage-scalability-docker, 2014.

[17] C. Evans, “Docker storage: how to get persistent stor-
age in Docker,” http://www.computerweekly.com/feature/
Docker-storage-how-to-get-persistent-storage-in-Docker, 2016.

[18] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,”
in Proc. of ISPASS, 2015.

[19] J. Green, “Disaggregated physical storage architec-
tures and hyperconvergence,” http://www.actualtech.io/
disaggregated-physical-storage-architectures-and-hyperconvergence/,
2016.

[20] S. C. Inc., “OpenOnload,” https://www.openonload.org/, 2013.

[21] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: A highly scalable user-level TCP stack for multi-
core systems,” in Proc. of NSDI, 2014.

[22] A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash ≈
Local Flash,” in Proc. of ASPLOS, 2017.

[23] I. Marinos, R. N. Watson, and M. Handley, “Network stack special-
ization for performance,” in Proc. of SIGCOMM, 2014.

[24] P. Menage, “Cgroups - The Linux Kernel Archives,” https://www.
kernel.org/doc/Documentation/cgroup-v1/cgroups.txt, 2016.

[25] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux J., vol. 2014, no. 239, 2014.

[26] A. Mouat, “Understanding Volumes in Docker,” http:
//container-solutions.com/understanding-volumes-docker/, 2016.

[27] NVM Express, “NVM Express – scalable, efficient, and industry
standard,” www.nvmexpress.org, 2016.

[28] Z. Ori, “High availability for centralized NVMe,” in Data Storage
Innovation Conference, 2016.

[29] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesys-
tem,” in IBM Research Report, 2012.

[30] Samsung, “XS1715 Ultra-fast Enterprise Class 1.6TB SSD,”
http://www.samsung.com/global/business/semiconductor/file/product/
XS1715 ProdOverview 2014 1.pdf, 2014.

[31] ——, “PM1725 NVMe PCIe SSD,” http://www.
samsung.com/semiconductor/global/file/insight/2015/11/
pm1725-ProdOverview-2015-0.pdf, 2015.

[32] Supermicro, “Supermicro NVMe Platforms,” https://www.
supermicro.com/products/nfo/NVMe.cfm, 2016.

[33] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the XFS File System,” in Proc. of USENIX
ATC, 1996.

[34] P. Teich, “NVIDIA’s TESLA P100 Steals machine learning from
CPU,” https://www.supermicro.com/products/nfo/NVMe.cfm, 2016.

[35] V. Tkachenko, “ext4 vs xfs on SSD,” https://www.percona.com/blog/
2012/03/15/ext4-vs-xfs-on-ssd/, 2012.

[36] M. Xie and L. Zefan, “Performance Improvement of Btrfs,” in Proc.
of Linux Con, 2011.

[37] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance Analysis of NVMe
SSDs and their Implication on Real World Databases,” in Proc. of
SYSTOR, 2015.

https://github.com/axboe/fio
http://www.tomsitpro.com/articles/dell-poweredge-r920-ssd-nvme-samsung,1-1818.html
http://www.tomsitpro.com/articles/dell-poweredge-r920-ssd-nvme-samsung,1-1818.html
http://oss.sgi.com/archives/xfs/2012-02/msg00219.html/
http://oss.sgi.com/archives/xfs/2012-02/msg00219.html/
http://planetcassandra.org/companies/
http://planetcassandra.org/companies/
http://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
http://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
http://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker
http://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker
http://www.computerweekly.com/feature/Docker-storage-how-to-get-persistent-storage-in-Docker
http://www.computerweekly.com/feature/Docker-storage-how-to-get-persistent-storage-in-Docker
http://www.actualtech.io/disaggregated-physical-storage-architectures-and-hyperconvergence/
http://www.actualtech.io/disaggregated-physical-storage-architectures-and-hyperconvergence/
https://www.openonload.org/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://container-solutions.com/understanding-volumes-docker/
http://container-solutions.com/understanding-volumes-docker/
www.nvmexpress.org
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
https://www.supermicro.com/products/nfo/NVMe.cfm
https://www.supermicro.com/products/nfo/NVMe.cfm
https://www.supermicro.com/products/nfo/NVMe.cfm
https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/
https://www.percona.com/blog/2012/03/15/ext4-vs-xfs-on-ssd/

	Introduction
	Benefits of Containers, NVMe and NVMf
	Container Storage Overview
	Docker Storage Drivers

	Explore Container Storage Options
	Container Performance Analysis
	Choice of Host FS on Performance
	Performance Comparison of Different Docker Storage Drivers
	Data Volume Performance
	Choice of Storage Configuration for NVMf
	Latency Breakdown

	Performance Evaluation and Optimization of Dockerized DBMS
	Analysis the Cassandra Container Performance
	Analysis the Bottleneck for Scaling Up
	Optimize Container Assignment through NVMf

	Discussion
	Related Work
	Conclusion
	References

