
Performance Analysis of NVMe SSDs and
their Implication on Real World Databases

Qiumin Xu1, Huzefa Siyamwala2, Mrinmoy Ghosh3, Tameesh Suri3, Manu Awasthi3, Zvika Guz3,
Anahita Shayesteh3, Vijay Balakrishnan3

1Univeristy of Southern California, 2San Jose State University, 3Samsung Semiconductor Inc., Milpitas, CA
1qiumin@usc.edu, 2huzefa.siyamwala@sjsu.edu,

3{mrinmoy.g, tameesh.suri, manu.awasthi, zvika.guz, anahita.sh, vijay.bala}@ssi.samsung.com

Abstract
The storage subsystem has undergone tremendous innova-
tion in order to keep up with the ever-increasing demand for
throughput. Non Volatile Memory Express (NVMe) based
solid state devices are the latest development in this do-
main, delivering unprecedented performance in terms of la-
tency and peak bandwidth. NVMe drives are expected to
be particularly beneficial for I/O intensive applications, with
databases being one of the prominent use-cases.

This paper provides the first, in-depth performance analy-
sis of NVMe drives. Combining driver instrumentation with
system monitoring tools, we present a breakdown of access
times for I/O requests throughout the entire system. Fur-
thermore, we present a detailed, quantitative analysis of all
the factors contributing to the low-latency, high-throughput
characteristics of NVMe drives, including the system soft-
ware stack. Lastly, we characterize the performance of mul-
tiple cloud databases (both relational and NoSQL) on state-
of-the-art NVMe drives, and compare that to their perfor-
mance on enterprise-class SATA-based SSDs. We show that
NVMe-backed database applications deliver up to 8× su-
perior client-side performance over enterprise-class, SATA-
based SSDs.

Categories and Subject Descriptors C.4 [Com-
puter Systems Organization]: [Performance Of Sys-
tems][Measurement Techniques]

Keywords SSD, NVMe, Hyperscale Applications,
NoSQL Databases, Performance Characterization

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SYSTOR ’15, May 26–28, 2015, Haifa, Israel.
Copyright c© 2015 ACM ISBN. 978-1-4503-3607-9/15/05. . . $15.00.
http://dx.doi.org/10.1145/2757667.2757684

1. Introduction

In recent years, a large amount of the world’s compute and
storage has been pushed onto back-end datacenters. Large-
scale datacenters host multitude of applications that run si-
multaneously, cater to many millions of active users, and ser-
vice billions of transactions daily. With the explosion in the
amount of data stored and processed by today’s “Big Data”
applications (Diebold 2000), the load on the I/O subsys-
tem in these datacenters has been increasing at an alarming
rate (Hoelzle and Barroso 2009).

To meet the ever-increasing performance demands, stor-
age subsystems and data-storage devices had to evolve.
While every new generation of drives provided a modest per-
formance improvement over its predecessor, several innova-
tions in drive technology introduced major leaps over the
previous state-of-the-art. Solid State Drives (SSDs) were the
first technology leap – owing to the lack of moving parts,
they delivered significantly better random-access read per-
formance as compared to hard disk drives (HDDs). The re-
cently announced Non-Volatile Memory Express (NVMe)
drives represents the second major technology leap. NVMe
is a software based standard (Huffman 2012; NVM-Express
2012) that was specifically optimized for SSDs connected
through the PCIe interface. The effort has been focused to-
wards building a standard that will not only provide bet-
ter performance and scalability, but will also be flexible
enough to accommodate storage solutions based on mem-
ory technologies of the future (Huffman, A. and Juene-
mann, D. 2013). Designed with those goals in mind, NVMe-
based drives are able to deliver vastly superior performance
in terms of both bandwidth and latency. In Section 2 we
overview the design features of NVMe, and contrast them
with their SATA counterparts.

Being a relatively new standard, there is little available
research on where the performance benefits of NVMe-based
drives emanate from. Indeed, to the best of our knowledge,
this paper is the first analysis of NVMe drives and their I/O
stack. In Section 3, we use synthetic benchmarks to stress-

test the drives and provide an in-depth analysis of their per-
formance. We combine driver instrumentation with block
layer tools like blktrace to break down the time spent
by the I/O requests in different parts of the I/O subsystem.
We report both latency and throughput results, and quantify
all major components along the I/O request path, including
user mode, kernel mode, the NVMe driver, and the drive it-
self. Our analysis quantifies the performance benefits of the
NVMe protocol, the throughput offered by its asynchronous
nature and the PCIe interface, and the latency savings ob-
tained by removing the scheduler and queuing bottlenecks
from the block layer.

NVMe drives are expected to be widely adopted in data-
centers (Bates 2014; Thummarukudy 2014; Jo 2014), where
their superior latency and throughput characteristics will
benefit a large set of I/O intensive applications. Database
Management Systems (DBMS) are primary examples of
such applications. These datacenters run a multitude of
database applications, ranging from traditional, relational
databases like MySQL, to various NoSQL stores that are
often a better-fit for “web 2.0” use-cases. In Section 4, we
study how the raw performance of NVMe drives benefits
several types of database systems. We use TPC-C to charac-
terize MySQL (a relational database), and use YCSB to char-
acterize Cassandra and MongoDB – two popular NoSQL
databases. We compare the performance of these systems on
a number of storage solutions including single and multiple
SATA SSDs, and show that NVMe drives provide substan-
tial system-wide speedups over other configurations. More-
over, we show that unlike SATA-based SSDs, NVMe drives
are never the bottleneck in the system. For the majority of
our experiments with the database applications under test,
we were able to saturate different components of the system
including the CPU and the network and were restricted by
the application software, but never by the NVMe drives. To
summarize, we make the following novel contributions:

• Compare and contrast the I/O path of the NVMe stack
against the traditional stack used by SATA SSDs

• Create a tool using blktrace to measure the NVMe stack
• Provide detailed break-down of the latency through the

different software components of the I/O stack, and ex-
plain the factors that lead to performance benefits of
NVMe-based SSDs

• Characterize the performance of several MySQL and
NoSQL databases, comparing SATA SSDs to NVMe
drives, and show the benefits of using NVMe drives

The rest of the paper is organized as follows. Section 2
presents the design details and innovative features of the
NVMe standard. Section 3 builds on the knowledge gath-
ered in the previous section and provides an outline of the
blktrace based tool and driver instrumentation done to
do the measurements. These tools are then used to provide
insights into NVMe performance. Next, in Section 4, we
provide performance characterization of the three different

database workloads, and compare the performances of these
workloads on different storage devices. Related work is pro-
vided in Section 5, and we conclude in Section 6.

2. NVMe Design Overview
Legacy storage protocols like SCSI, SATA, and Serial At-
tached SCSI (SAS), were designed to support hard disk
drives (HDDs). All of these communicate with the host us-
ing an integrated on-chip or an external Host Bus Adaptor
(HBA). Historically, SSDs conformed to these legacy inter-
faces and needed an HBA to communicate with the host sys-
tem. As SSDs evolved, their internal bandwidth capabilities
exceeded the bandwidth supported by the external interface
connecting the drives to the system. Thus, SSDs became lim-
ited by the maximum throughput of the interface protocol
(predominantly SATA) (Walker 2012) itself. Moreover, since
SSD access latencies are orders of magnitude lower than that
of HDDs, protocol inefficiencies and external HBA became
a dominant contributor to the overall access time. These rea-
sons led to an effort to transition from SATA to a scalable,
high-bandwidth, and low-latency I/O interconnect, namely
PCI express (PCIe).

Any host-to-device physical layer protocol such as PCIe
or SATA, requires an abstracted host-to-controller interface
to enable driver implementation. (For example, the primary
protocol used for SATA is AHCI (Walker 2012)). A major
inhibitor to the adoption of PCIe SSDs proved to be the fact
that different SSD vendors provided different implementa-
tions for this protocol (NVM-Express 2012). Not only that,
vendors provided different drivers for each OS, and imple-
mented a different subset of features. All these factors con-
tributed to increased dependency on a single vendor, and re-
duced interoperability between cross-vendors solutions.

To enable faster adoption of PCIe SSDs, the NVMe stan-
dard was defined. NVMe was architected from the ground
up for non-volatile memory over PCIe, focusing on latency,
performance, and parallelism. Since it includes the register
programming interface, command set, and feature set defi-
nition, it allows for standard drivers to be written and hence
facilitates interoperability between different hardware ven-
dors. NVMe’s superior performance stems from three main
factors: (1) better hardware interface, (2) shorter hardware
data path, and (3) simplified software stack.

Interface capabilities: PCIe supports much higher
throughput compared to SATA: while SATA supports up
to 600 MB/s, a single PCIe lane allows transfers of up to
1 GB/s. Typical PCIe based SSDs are ×4 PCIe generation
3 devices and support up to 4 GB/s. Modern x86 based
chipsets have ×8 and ×16 PCIe slots, allowing storage de-
vices to have I/O bandwidth up to 8-16 GB/s. Therefore, the
storage interface is only limited by the maximum number of
PCIe lanes supported by the microprocessor. 1

1 Intel Xeon E5 16xx series or later support 40 PCIe lanes per CPU, allow-
ing I/O bandwidth of up to 40GB/s.

(a) (b)

Figure 1: (a) A comparison of the software and hardware architecture of SATA HDD, SATA SSD, and NVMe SSD. (b) An
illustration of the I/O software stack of SATA SSD and NVMe SSD.

Hardware data path: Figure 1(a) depicts the data access
paths of both SATA and NVMe SSDs. A typical SATA de-
vice connects to the system through the host bus. An I/O
request in such a device traverses the AHCI driver, the host
bus, and an AHCI host bus adapter (HBA) before getting to
the device itself. On the other hand, NVMe SSDs connect
to the system directly through the PCIe root complex port.
In Section 3 we show that NVMe’s shorter data path signifi-
cantly reduces the overall data access latency.

Simplified software stack: Figure 1(b) shows the soft-
ware stack for both NVMe and SATA based devices. In the
conventional SATA I/O path, an I/O request arriving at the
block layer will first be inserted into a request queue (Ele-
vator). The Elevator would then reorder and combine multi-
ple requests into sequential requests. While reordering was
needed in HDDs because of their slow random access char-
acteristics, it became redundant in SSDs where random ac-
cess latencies are almost the same as sequential. Indeed, the
most commonly used Elevator scheduler for SSDs is the
noop scheduler (Rice 2013), which implements a simple
First-In-First-Out (FIFO) policy without any reordering. As
we show in Section 3, the Elevator being a single point of
contention, significantly increases the overall access latency.

The NVMe standard introduces many changes to the
aforementioned software stack. An NVMe request bypasses
the conventional block layer request queue2. Instead, the
NVMe standard implements a paired Submission and Com-
pletion queue mechanism. The standard supports up to 64 K
I/O queues and up to 64 K commands per queue. These
queues are saved in host memory and are managed by the
NVMe driver and the NVMe controller cooperatively: new
commands are placed by the host software into the submis-

2 The 3.17 linux kernel has a re-architected block layer for NVMe drives
based on (Bjørling et al. 2013). NVMe accesses no longer bypass the kernel.
The results shown in this paper are for the 3.14 kernel.

sion queue (SQ), and completions are placed into an asso-
ciated completion queue (CQ) by the controller (Huffman
2012). The controller fetches commands from the front of
the queue, processes the commands, and rings the comple-
tion queue doorbell to notify the host. This asynchronous
handshake reduces CPU time spent on synchronisation, and
removes the single point of contention present in legacy
block drivers.

3. NVMe Performance Analysis
In this section we provide detailed analysis of NVMe per-
formance in comparison to SATA-based HDDs and SSDs.
First, in Section 3.1, we describe our driver instrumentation
methodology and the changes to blktrace that were done
to provide access latency break downs. Sections 3.2 and Sec-
tion 3.3 then use these tools to provide insight into analyzing
the software stack and the device itself.

3.1 Driver and blktrace Instrumentation

We use fio (Axboe 2014) to generate synthetic I/O traffic,
and use blktrace (Axboe and Brunelle 2007) to character-
ize individual drives and their software stacks. Unless stated
otherwise, I/O traffic is generated using fio’s libaio asyn-
chronous I/O engine. We bypass the page cache to ensure
measurement of raw device performance. This is achieved
by setting fio’s direct I/O flag. For our analysis, we also
use two statistics reported by fio: (1) slat (submission la-
tency), which is the time taken to submit the I/O request to
kernel space; and (2) clat (completion latency), which is
the time taken by the I/O request from submission to com-
pletion.

Blktrace (Axboe and Brunelle 2007) is a tool that enables
tracing the path of an I/O operation throughout the I/O stack.
It relies on tracepoints inserted into the Linux kernel in or-
der to report information about multiple trace events. This

(a) (b)

Figure 2: (a) NVMe request call graph. (b) Latency break-
down.

includes, among other things, timestamp of the event, block
addresses, PID of the requesting process and request type.
While instrumentation for the SATA path is readily avail-
able, we had to manually instrument for the NVMe path,
including the driver. Figure 1(b) and Figure 2(a) detail the
instrumentation points along the I/O path for NVMe drives.
In order to trace the life cycle of an I/O operation, following
events needed to be traced through the NVMe storage stack.

• Queue insert time (Q tracepoint) – logs the time an I/O
request is inserted into the request queue. This is the point
where NVMe I/O flow starts to diverge from SATA.

• Driver issue time (D tracepoint) – logs the time an I/O
request is issued to the driver on conventional SATA/SAS
drives. Since the block layer in the NVMe datapath is
extremely thin, the D tracepoint coincides with the Q
tracepoint. Therefore, we do not instrument a separate D
tracepoint for the NVMe datapath.

• NVMe Device issue time (N tracepoint) – We add this
tracepoint in the NVMe driver after the submission queue
door bell is rung, and the control of the request is handed
over to the NVMe controller (Figure 1(b)). This repre-
sents the NVMe device issue time.

• Completion time (C tracepoint) – logs the time for I/O
completion (Figure 2(a)).

We use two metrics obtained by post processing blktrace
traces using a modified version of blkparse. The metrics
computed are Queue to Completion time (Q2C) and NVMe
Device to Completion time (N2C). The desciptions of Q2C
and N2C can be seen in Figure 2(b). In addition to Q2C and
N2C, we also use statistics reported by fio: slat and clat.
Definitions of slat and clat can also be found in Figure 2(b).

As illustrated in Figure 2(b), we break down the total
NVMe access latencies into the following components: user
time, kernel time, driver time, and device time. User time is
the time spent by the user application to transfer control to
kernel level syscall, which equals to slat. Kernel time is the
time spent from entering the kernel to the time the request
enters the NVMe driver. It can be calculated by subtracting
Q2C latency from clat. Driver time is the time spent in
NVMe driver which is equal to the time from Q trace point
to N tracepoint. After the N tracepoint, the access is handed

to the NVMe controller. Therefore, N2C time reported by
blkparse is categorized as device time. We also break down
the I/O access latency of SATA devices in a similar fashion.
Since the SATA stack is well instrumented for this purpose,
we do not need to add additional tracepoints.

3.2 Software Stack Overheads

Using the instrumentation tools described previously, in this
section, we provide analysis and breakdown of the time
spent in different sections of the I/O software stack and the
device for SATA-based HDD/SSD, as well as the NVMe
SSD. The devices used in our study can be found in Table 1.

Figure 3 shows a breakdown of the time spent by each
request in different sections of the I/O software stack for
random read latency at low load – 1 request per second.
Recall that since the SATA I/O stack was optimized for
HDDs it assumed much larger device latencies than SSDs.
Consequently, while the software overhead for HDD is only
0.5%, it accounts for 28% of the overall access latency in
SATA SSD; the block layer alone accounts for 5% of the
total latency. Indeed, the re-design of the software stack in
NVMe was done to reduce these large overheads. As shown
in the figure, the total software overhead in NVMe accesses
is significantly reduced to 7.3%. The block layer access
latencies are minuscule. The access latency of the NVMe
driver itself is about 0.6µs, which accounts for 0.6% of total
access latency.

The significant reduction of software overhead in NVMe
over SATA can be explained based on its call-graph as shown
in Figure 1(b). For each SATA device, requests need to ac-
quire a single lock to the request queue corresponding to
the device. This is a major source of contention (FusionIO
2014a). All I/O requests from the host to the storage device,
irrespective of the process, need to obtain the lock in order to
read/write to the device. An NVMe device uses its large pool
of NVMe queues to provide higher levels of I/O parallelism.
Once the CPU writes a command to the tail of the SQ, the
CPU side finishes the I/O request and can continue servic-
ing other requests. However, for the SATA device, CPU is
responsible to pass the request through several functions be-
fore the command is finally issued to the device. Thus, the
NVMe driver helps reduce the CPU time spent to issue an
I/O request.

3.3 Device Bandwidth and Access Latencies

Figure 4 shows the maximum bandwidth and IOPS for 4 KB
random read accesses. We observe an enormous increase in
throughput from 190 IOPS on HDD to about 70K IOPS on
SSD. By breaking interface bottlenecks, innovation in FTL
design, and better device characteristics, modern NVMe de-
vices sustains maximum throughput of 750K IOPS.

Figure 5(a) shows the average access latencies for se-
quential read, random read, sequential write and random
write accesses measured with FIO using queue depth of 8,
running 4 parallel I/O jobs with 4 KB block size. Due to the

Figure 3: Break-down of the time spent in different sections
of the I/O software stack.

190	

70k	

750k	

1.00E+00	

1.00E+01	

1.00E+02	

1.00E+03	

1.00E+04	

1.00E+05	

1.00E+06	

SATA HDD SATA SSD NVMe

Maximum IOPS

(a)

791KB/s	

278MB/s	

3GB/s	

1.00E+00	

1.00E+01	

1.00E+02	

1.00E+03	

1.00E+04	

1.00E+05	

1.00E+06	

1.00E+07	

SATA HDD SATA SSD NVMe

Maximum BW

(b)

Figure 4: Measured (a) Maximum IOPS and (b) Maximum
bandwidth for SATA HDD, SATA SSD, and NVMe SSD.

seek time and rotational latency, random accesses on rota-
tional hard disks are orders of magnitude higher than sequen-
tial access. However, on SSDs, there’s not much difference
between random and sequential accesses. Both random and
sequential addresses will be translated from Logical Block
Address (LBA) into Physical Block Address (PBA) based
on different wear leveling mechanisms, thus the sequential-
ity of the address may not be maintained. Consequently, as
shown in Figure 5(a), the total access latencies as well as
latency decompositions are the same for both random and
sequential accesses. The breakdown of latencies shows that
for reads, approximately 80% of the total time is spent in
the device while for writes, 64% of the access time is spent
in the device. The absolute overhead of the application, OS,
and driver is constant for reads and writes, and is approxi-
mately 23µs. The breakdown of time between driver, kernel
and user time is also similar among reads and writes, with
driver, kernel and the user program accounting for 2-3µs,
6-7µs and 14-15µs, respectively. Another notable charac-
teristic that can be observed is that write speeds are faster
than read speeds at low load. The primary reason for this is
that all modern SSDs have a DRAM buffer where all writes
are committed. Conversely, the read access is almost always
bound by the time taken to access the flash chips.

Figure 5(b) compares the average access latency with
the maximum access latencies. Depending on the device
controller design and the addressing mechanism etc, the
access latency is not always a deterministic value but shows
a stochastic distribution. Maximum latency can be orders of

magnitudes higher than the average latency, which is shown
in the write access latencies. This is attributed to Garbage
Collection (Hu et al. 2009), and wear-leveling mechanisms
deployed in SSDs for improving device endurance.

Figure 5(c) shows the comparison of random read and
random write latencies between SATA-HDD, SATA-SSD
and NVMe SSD under low load (1 access per second). The
access latency of SATA-HDD is 5.3ms while the SATA-SSD
random read access latency is only 0.5ms. NMVe SSD still
shows the best random read access latency at 90µs. Since
most writes to HDD, SSD, and NVMe devices are written
to the RAM, write latencies are only ∼80µs for HDD and
SATA SSD and 62µs for NVMe.

4. DBMS Performance Evaluation
NVMe drives are expected to be deployed in detacen-
ters (Hoelzle and Barroso 2009) where they will be used
for I/O intensive applications. Since DBMSs are a prime ex-
ample of I/O intensive applications for datacenters, this sec-
tion characterizes the performance of several NVMe-backed
DBMS applications. We study both relational (MySQL) and
NoSQL databases (Cassandra and MongoDB), and compare
NVMe performance with SATA-SSDs in multiple configu-
rations. We show that superior performance characteristics
of NVMe SSDs can be realized into significant speedups for
real-world database applications.

Production databases commonly service multiple clients
in real-world use-cases. However, with limited cluster re-
sources, we experiment with a single server-client setup. All
pertaining experiments are based on a dual-socket Intel Xeon
E5 server, supporting 32 CPU threads. We use 10GbE ether-
net for communication between the client and server. Server
hardware configuration is representative of typical installa-
tions at major data-centers. Further details on the hardware
and software setup can be found in Table 1. We use TPC-
C (TPC 2010) schema to drive the MySQL database, and
YCSB (Cooper et al. 2010) to exercise NoSQL databases.

We support three storage configurations for all our experi-
ments. Our baseline performance is characterized on a single
SATA SSD. In addition, we set up four SSDs in RAID0 con-
figuration using a hardware RAID controller. This configu-
ration enables us to understand performance impact related
due to bandwidth improvements, as it provides much higher
aggregated disk throughput (over 2 GB/s) but does little to
reduce effective latency. Finally, we compare both SSD con-
figurations to a single NVMe drive and analyze its impact on
performance.

4.1 Relational Databases: TPC-C

TPC-C (TPC 2010) is an online transaction processing
(OLTP) workload that simulates a complex application en-
vironment. It is composed of several read-only and update-
intensive operations, and represents a wholesale business
that manages, sells, and distributes a product to a large set
of customers.

(a) (b) (c)

Figure 5: (a) Latency breakdown (b) Mean and max latencies for sequential read, random read, sequential write, and random
write accesses (c) Read/write latency comparison for SATA HDDs, SATA SSDs and NVMe SSDs.

Processor Xeon E5-2690, 2.9GHz,
dual socket-8 cores

HDD Storage 1× 15K SAS Enterprise disk
SSD Storage 4× Samsung 843 Pro SATA SSD

(Samsung 2013)
NVMe Storage 1× Samsung XS 1715 NVMe

(Samsung 2014)
Memory Capacity 64 GB ECC DDR3 R-DIMMs

Memory Bandwidth 102.4GB/s (8 channels of DDR3-1600)
RAID Controller LSI SAS 2008 (up to 290,000 IOPS)

Network 10 Gigabit Ethernet NIC
Operating system Ubuntu 12.04.5

Linux Kernel 3.14 Mainline
FIO Version 2.1.10 run with direct I/O

HammerDB version 2.16
MySQL version 5.5

Cassandra version 2.0.9
MongoDB version 2.6.0

Table 1: Server node configuration.

The TPC-C workload is organized as warehouses within a
company, where each warehouse includes a predefined num-
ber of districts and customers. It supports five representative
transactions: two are strictly read-only, while three perform
both read and write access (Dell 2013). All transactions op-
erate against a database of nine tables; the workload also
defines the overall distribution of transactions and their re-
sponse time requirements (TPC 2010). TPC-C measures the
number of new orders processed per minute, and the metric
is expressed in transactions-per-minute (tpmC).

4.1.1 TPC-C Experimental Setup and Optimizations

We use HammerDB (HammerDB 2014) to generate the
schema and transactions and MySQL (Oracle 2014) as the
underlying database.

Our initial setup and experiments indicate sub-optimal
performance on stock installation of MySQL, thereby
prompting the need to identify and optimize several param-
eters. In interest of space, we only summarize four key pa-
rameters that had the most impact on performance:

1. Concurrent Connection Limit: We set the number of con-
current connections supported in MySQL and the number
of open file descriptors in the Linux kernel to 32K.

2. I/O scheduler: We use the noop Elevator scheduler (see
Section 2) to gain optimal SSD performance.

3. Thread Concurrency: Mumber of concurrent threads in-
side MySQL’s storage engine (InnoDB) is set to match
the maximum supported CPU threads (32).

4. Buffer Pool Size: We use a buffer pool size of 8 GB for
caching InnoDB tables and indices.

We initialize the database with 1024 warehouses, resulting
in a 95 GB dataset. As mentioned in section 4, we experi-
ment with a single SSD and a four SSD setup. The SSD ex-
periments are subsequently compared with a single NVMe
drive, and a RAM-based tmpfs filesystem.

4.1.2 TPC-C Performance Evaluation

We use timed test driver in HammerDB and measure re-
sults for up to six hours. To establish a stable TPC-C con-
figuration, we first explore the throughput of TPC-C system
by scaling the number of virtual users (concurrent connec-
tions), as shown in Figure 6. While maximum throughput
is achieved at ten virtual users, increasing concurrency past
that point leads to a sharper fall in throughput. We observe
more consistent performance between 60-65 virtual users.
Based on these sensitivity results, we select 64 virtual users
for all experiments.

TPC-C is a disk intensive workload, and is characterized
as a random mix of two reads to one write traffic classifi-
cation (Dell 2013). While it mostly focuses on the overall
throughput metric, lower latency storage subsystem reduces
the average time per transaction, thus effectively increas-
ing the overall throughput. Figure 7 shows the I/O latency
impact on effective CPU utilization for all four previously
described experimental categories. As shown in the figure,
for the baseline single-SSD configuration, the system spends
most of its time in I/O wait state. This limits the throughput
of the system as CPU spends the majority of its execution
cycles waiting on I/O requests to complete. Figure 8 shows
the disk read and write bandwidth for the SSD configura-
tion, with writes sustaining at about 65 MB/s and reads av-
eraging around 140 MB/s. While NAND flash has better la-
tencies than HDDs, write traffic requires large management

overhead, leading to a significant increase in access latencies
for read/write mixed traffic. The trend exacerbates for traffic
with increasing amount of randomness and write ratio.

Figure 7(b) shows that striping disk traffic across four
SSDs reduces the I/O wait times signficantly. Distributing
traffic across four SSDs reduces total number of accesses
per SSD leading to reduced access latencies. The lower
latency translates into lower I/O wait times and increased
user-level activity. As shown in Figure 9, this results in about
1.5× throughput (tpmc) improvement We also see a similar
increase in disk read and write bandwidth.

The NVMe SSD, (Figure 7(c)) shows minimal I/O wait
times and significantly higher sustained user-level activity
at around 30%. As described earlier in section 3.3, native
NVMe latencies are much lower than their SATA counter-
parts due to hardware and software interface and protocols.
Our experimental results show increased user-level activity
with one NVMe drive leads to 3.5× increase in performance
over the baseline, as shown in Figure 9.

Figure 6: TPC-C performance sensitivity with virtual users
In order to further understand the impact of storage la-

tency, we experiment with tmpfs (Snyder 1990) – a tem-
porary file system mounted on DRAM. DRAM access la-
tencies are around three orders of magnitude lower than
that of NAND flash, and support maximum bandwidth of
12.8 GB/s per channel (DDR3-1600). Figure 7(d) shows that
tmpfs-based experiment results in sustained user-level activ-
ity of around 60%, with almost no visible I/O wait states. As
shown in Figure 9, this results in a 5× performance gain over
a single SSD. While tmpfs based experiment yeilds highest
throughput, performance benefits are limited in comparison
to the magnitude of reduction in latency and the bandwidth
increase realized by using tmpfs. It is also important to note
that tmpfs is a volatile storage volume mostly used as tempo-
rary storage. Hence, tmpfs filesystems only serves as a proxy
to understand theoretical upper limits on performance.

4.2 Cassandra

Cassandra is an open-source, NoSQL data store, that gained
widespread adoption in the last few years. Companies such
as Netflix, WalmartLabs, Digg and Twitter use Cassandra
in production (Datastax 2010). It has been primarily de-
signed and optimized for fast writes and “scale-out”: Cas-
sandra throughput will (theoretically) scale linearly when
new nodes are added to the cluster.

Figure 7: CPU utilization for TPC-C with: (a) One SSD drive
(b) Four SSD drives (c) One NVMe drive and (d) Tmpfs

Figure 8: TPC-C disk bandwidth with one SSD drive

Figure 9: TPC-C performance improvement with SSD,
NVMe and Tmpfs

In this section we explain some of the important data
structures of Cassandra to motivate discussion of their ef-
fects on performance. Cassandra, by design, is optimized
for writes (FusionIO 2013). Any data written to Cassandra
is written in parallel to (1) the memtable – a DRAM res-
ident cache; and (2) to the commit log – a disk resident
data structure (DataStax 2014; FusionIO 2013). When the
memtable content exceed a certain threshold, it is flushed to
disk, creating an SSTable. Since Cassandra does not update
data in-place, the updated data will be written to a newer

SSTable rather than the SSTable containing the original data.
Since Cassandra is “eventually consistent”, the writes to the
commit-log (which typically resides on a different disk than
the data disk), are not on the critical path for write comple-
tion. In contrast to writes, reads in Cassandra have a longer
datapath if they miss the memtable. Since data can exist in
multiple SSTables, all possible locations need to be checked
before the latest data is returned. In order to reduce frequent
multiple lookups, Cassandra performs periodic compaction
of SSTables that merges and consolidates different SSTables
into a single SSTable.

To provide better insight into the size of Cassandra data
structures, the database size and Cassandra performance, we
experimented with the YCSB C (100% reads) workload. We
varied the database size and number of concurrent threads
for the Cassandra server while using NVMe drive for data.
The result of this experiment is shown in Figure 10. The
Memtable size is set to 1 GB, and the page cache manage-
ment is left to the OS. The size of the Memtable determines
the frequency of flushes to the drive, and the total number
of on-disk SSTables affects read performance. We observe
two distinct performance effects in the figure. In the first
case, the database size is small and the complete database
fits in the Memtable. In this case, lower number of concur-
rent read threads lead to better performance. Since all the
data is served by DRAM, the bottleneck in the system is the
context switching and synchronization overhead of concur-
rent threads. As the database size increases, the NVMe disk
(with an order of magnitude larger latency than DRAM),
is used more frequently. In this case, the Cassandra server
with larger thread count has better performance as it is able
to hide the latency effectively keeping throughput constant.
Therefore, while the performance of Cassandra with 4 read
threads and 8 read threads drop, the 16, 32, and 64 threads
instances have constant performance. To mitigate the over-
heads of context switch all subsequent Cassandra experi-
ments have been done using 32 concurrent threads, which
matches the number of hyperthreaded cores that the CPU
supports. The second important effect is observed when we
increase the database size beyond the size of the PageCache.
In this case, the performance of all instances drop because
of increased use of the NVMe disk. From the above two ob-
servations we can conclude that the performance of Cassan-
dra is heavily dependent on the installed DRAM capacity
and also the read latency and throughput performance of the
storage for read intensive benchmarks. This observation is
reinforced on comparison of Cassandra performance among
different storage media.

Figure 11 compares Cassandra performance when con-
figured with 1 SSD drive, 4 SSD drives on RAID0, and 1
NVMe drive for all 6 YCSB workloads. NVMe performance
improvements over SSD range from 55% in workload D to
a whopping 8.34X in workload C. Recall that writes (in-
serts) and updates happen in DRAM while reads missing the

Figure 10: Comparison of Cassandra performance for differ-
ent database sizes with NVMe SSD as the storage media.

memtable cache are serviced by multiple SSTables that re-
side on disk. Indeed, NVMe speedups are most profound in
read-heavy workloads (workloads B, and C) and are modest
in write-heavy workloads (workload A) and workloads with
many read-modify-writes (workload F). The primary reason
why workload D does not show significant improvement is
because workload D has the latest distribution and has great
cache characteristics. Also, since workload E (scans) reads
large chunks of data, it benefits from data striping in RAID0.

Figure 12 compares the client side read latencies of dif-
ferent storage media.3 The reason for not showing update
and insert latencies is that they are relatively the same across
all media. A possible reason for that is that all storage me-
dia considered in this paper have a DRAM buffer and all
writes to the storage are committed to the storage device
DRAM. It can also be observed that the throughput bene-
fits for Cassandra correlates well with the corresponding la-
tency benefits. Workloads B and C have the lowest relative
latency for NVMe compared to SATA SSD (11%-13%), and
they show the best benefits in throughput. Another interest-
ing data-point in the figure is the one showing scan latency
in workload E. This latency is almost the same for NVMe
drive and RAID0 SSD drives. The throughput of NVMe for
workload E is also very close to that of four RAID0 SSDs.

The Cassandra server running YCSB does not come close
to saturating the bandwidth offered by the NVMe drive. For
Cassandra, the bottlenecks of operation are either with the
software stack or I/O latency. For the NVMe drive case, the
peak disk bandwidth is 350 MB/s, while the one SSD Cas-
sandra instance can barely sustain 70MB/s. Further inves-
tigation into the CPU utilization for the one SSD instance
reveals that a good amount of time is spent in waiting for
I/O operation. In contrast, the NVMe instance has negligi-
ble I/O wait time. This observation further points to the fact
that Cassandra read TPS performance is very sensitive to the
read latency of the storage media. Also, the benefits demon-
strated for Cassandra using NVMe drives are primarily due
to lower read latency of NVMe drives.

3 We only show comparison of read latencies in this figure with the excep-
tion of workload E that shows SCAN latency.

Figure 11: Comparison of Cassandra performance for differ-
ent storage media.

Figure 12: Comparison of Cassandra client side latency for
different storage media.

4.3 MongoDB

MongoDB is another increasingly popular NoSQL data
store. MongoDB uniqueness stems from the fact that it fol-
lows a document model for storing records. Each record
in MongoDB is a collection (data structure) of field-value
pairs, very similar to a JSON-like representation. The values
themselves can be other documents, or a collection of docu-
ments (MongoDB 2014b). Data for a MongoDB database is
stored as collections – an array of row-column style tables. A
collection holds one or more documents, which corresponds
to a row in a relational database table. Each document has
one or more fields, which corresponds to a column in a rela-
tional database table (MongoDB 2014b).

4.3.1 MongoDB Performance Considerations

While the internals of MongoDB are beyond the scope of
this work, an understanding of the basics is needed to better
explain the results in later sections. MongoDB strives for
better performance using memory mapped I/O (MongoDB
2014a,c,d). Memory mapped I/O allows for mapping files
to virtual memory of the processor. The entire database is
stored on disk by splitting it into a number of small sized
data files, with the size of these files ranging from 64 MB to
2 GB. As and when these files are accessed by the storage
engine, they are memory mapped using mmap(). This allows
MongoDB to behave as if the working set is DRAM resident.

4.3.2 MongoDB Performance Analysis

Since MongoDB uses memory mapped I/O, the dependence
of the application on the storage subsystem is not as pro-
nounced as in the previous cases. Nevertheless, there are dis-
tinct benefits of having NVMe drives in certain cases. Fig-
ure 14 presents the relative client side performance results
for three storage configurations considered in this paper. The

benefit of NVMe drives is evident in cases where disk perfor-
mance dictates system performance, i.e. workload E (SCAN
intensive) and Load phase (write intensive). Figure 13 com-
pares the disk bandwidth utilization during the Load phase
of YCSB execution. As is evident, the NVMe drive is able to
sustain 3× higher write bandwidth compared to the SATA
SSD, leading to an overall 2× increase in throughput. Mov-
ing from a single SSD to a RAID0 configuration helps per-
formance, but not as much as a single NVMe SSD. Similar
behavior is observed for workload E, which is SCAN inten-
sive and requires sustained read bandwidth. As compared to
the 4 SSD RAID0 configutation, the NVMe drive performs
65% and 36% better for the Load phase and workload E,
respectively. For the rest of the YCSB workloads, owing to
memory mapped I/O, the performance of NVMe SSD is very
similar to that of RAID 0.

Figure 14: Comparison of MongoDB performance for dif-
ferent storage media.

5. Related Work
In this section, we describe some of the work related to per-
formance characterization of SSDs, industrial storage solu-
tions and system software optimizations for I/O.

5.1 Software Stack Bottlenecks and Remedies

With improvements in storage device technology, the once
negligible cost of I/O stack time has become more rele-
vant (Foong et al. 2010; Caulfield et al. 2010). A number
of studies have provided proof of the I/O software stack be-
ing the major performance bottleneck in future storage sys-
tems. Yu et al. (Yu et al. 2014) analyzed system software
overheads and propose six optimizations that enable oper-
ating systems to fully exploit the performance characteris-
tics of storage devices based on non-volatile media. They
proposed using polling over interrupts, bypassing the I/O
scheduler for certain types of requests, and using an asyn-
chronous I/O path, among other optimizations. Along simi-
lar lines, Yang et al. (Yang et al. 2012) make a case for allow-
ing synchronous completion of certain types of I/O requests,
to avoid the kernel’s asynchronous software stack. They ar-
gue for a solution with both synchronous and asynchronous
paths for block devices: synchronous one is used for small,
frequent transfers, while the asynchronous one for large, in-
frequent ones. In a recent study, Swanson et al. (Swanson
and Caulfield 2013) analyzed the overheads of the software
I/O stack. They show that for a 4KB access to HDD, the

Figure 13: Comparison of disk bandwidth utilization for Load phase of MongoDB benchmarking.

Linux software stack accounts for only 0.3% of the total ac-
cess time. The contribution of the software stack to the ac-
cess latency for the same 4KB access on a prototype SSD
was 70%. Bjørling et al. (Bjørling et al. 2013) show the inef-
ficiencies of the Linux I/O block layer, especially because of
the use of locks in the request queue. They propose a design
based on multiple I/O submission and completion queues in
the block layer. Their optimizations have been recently in-
cluded into the Linux kernel (Larabel 2014).

The Linux’s I/O subsystem exports a number of knobs
that can be turned to get most performance out of a given
set of hardware resources. A number of I/O schedulers (Cor-
bet 2002; J. Corbet 2003) have been developed in the recent
past for different storage devices. The Noop scheduler (Rice
2013) was developed specifically to extract the maximum
performance out of SSDs. Pratt and Heger (Pratt and Heger
2004) showed a strong correlation between the I/O sched-
uler, the workload profile and the file system. They show that
I/O performance for a given system is strongly dependent
on tuning the right set of knobs in the OS kernel. Bench-
marks (Axboe 2014) and tools (Axboe and Brunelle 2007)
have been very useful in analyzing the I/O software stack.

5.2 NVMe Standard

A number of documents (NVM-Express 2012; Huffman
2012; Walker 2012) provide some details into the implemen-
tations of the standard as well as its qualitative benefits over
the existing standards, but there is a dearth of literature pro-
viding quantitative insights. Busch (Busch 2013) provides
details about the NVMe driver implementation. Huffmann
et al. (Huffman, A. and Juenemann, D. 2013) provide more
details on NVMe core features and discuss its scalability for
next generation NVM devices with latencies orders of mag-
nitude lower than NAND SSDs. They also discuss acceler-
ating NVM adoption through Hybrid Storage Solutions.

5.3 Industrial Solutions

There has been increasing interest in developing efficient
and better storage solutions for Cloud and Hyperscale
databases. Recently, SanDisk has developed a hardware-
software solution for scaling Cassandra (SanDisk 2013).
SanDisk proposes a solution to scale Cassandra by allowing
custom SanDisk software (Zetascale) that utilizes idle cores
to execute threads for generating data accesses to the SSDs.
This allows for better utilization of the CPU cores, as well as
extracts the maximal benefit from the SSD by increasing uti-
lization. However, this solution is intrusive in the sense that it
requires custom software to be installed on the servers. Sim-

ilarly, Fusion-IO recommends using faster and denser PCIe
SSDs (FusionIO 2013) to store Cassandra’s database files.

SanDisk’s MongoDB solution (SanDisk 2014) revolves
around using Zetascale to accelerate accesses to the
databases. On the other hand, the Fusion-IO solution (Fusio-
nIO 2014b) proposes to use the fast and dense flash memory
to be extended into a larger address space alongside DRAM
using their ioMemory product.

6. Conclusions

Scale-out systems are driving the need for high performance
storage solutions with high available bandwidth and lower
access latencies. To address this need, newer standards are
being developed exclusively for non-volatile storage devices
like SSDs. In this paper, we present the first, detailed analy-
sis and characterization of SSDs based on the Non Volatile
Memory Express (NVMe) standard for storage subsystems,
and make a number of important contributions.

Firstly, we show that there is tremendous benefit to be
had from re-architecting the existing I/O stack of the operat-
ing system. We instrument the Linux NVMe driver and the
popular blktrace tool to quantify the benefits of a leaner
I/O stack. Using this methodology, we show that the NVMe
access stack allows the I/O requests to bypass most of the
legacy I/O layers, resulting in a 4× decrease in system soft-
ware overheads. Secondly, using synthetic benchmarks, we
also verify the rated, raw performance of the NVMe SSDs.4

Lastly, using databases as an example class of applica-
tions, we show that NVMe’s hardware and software redesign
of the storage subsystem translates into real-world benefits
for a number of scale-out database applications. In partic-
ular, we show that, as compared to a single SATA SSD,
NVMe based SSDs can provide performance benefits of up
to 8×. Furthermore, we show that one NVMe based SSD
can outperform a RAID 0 configuration comprising of four
SATA SSDs by up to 5×. Therefore, a better hardware inter-
face, simpler hardware datapath, and a simpler stack, enable
NVMe drives to demonstrate exemplary performance for
real world database applications compared to SATA SSDs.
The database application performance benefits would enable
a wider adoption of NVMe SSDs in enterprise and cloud dat-
acenters.

4 The 3.17 linux kernel has a re-architected block layer for NVMe drives
based on (Bjørling et al. 2013). NVMe accesses no longer bypass the
kernel. The results shown in this paper are for the 3.14 kernel.

References
J. Axboe. FIO.
http://git.kernel.dk/?p=fio.git;a=summary,
2014.

J. Axboe and A. D. Brunelle. blktrace User Guide.
http://www.cse.unsw.edu.au/˜aaronc/
iosched/doc/blktrace.html, 2007.

S. Bates. Accelerating Data Centers Using NVMe and CUDA.
http://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2014/20140805_D11_
Bates.pdf, 2014.

M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux block IO:
Introducing multi-queue SSD access on multi-core systems. In
Proceedings of SYSTOR, 2013.

K. Busch. Linux NVMe Driver.
http://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2013/20130812_
PreConfD_Busch.pdf, 2013.

A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In
Proceedings of MICRO, 2010.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of SoCC, 2010.

J. Corbet. A new deadline I/O scheduler.
http://lwn.net/Articles/10874/, 2002.

Datastax. Companies using nosql apache cassandra.
http://planetcassandra.org/companies/, 2010.

DataStax. Cassandra – About the write path.
http://www.datastax.com/documentation/
cassandra/1.2/cassandra/dml/dml_write_
path_c.html?scroll=concept_ds_wt3_32w_zj_
_about-the-write-path, 2014.

Dell. OLTP I/O Profile Study with Microsoft SQL 2012 Using
EqualLogic PS Series Storage .
http://i.dell.com/sites/doccontent/
business/large-business/en/Documents/
BP1046_OLTP_IO_Profile_Study.pdf, 2013.

F. X. Diebold. Big Data Dynamic Factor Models for
Macroeconomic Measurementand Forecasting. In Eighth World
Congress of the Econometric Society, 2000.

A. P. Foong, B. Veal, and F. T. Hady. Towards SSD-Ready
Enterprise Platforms. In Proceedings of ADMS at VLDB, pages
15–21, 2010.

FusionIO. Fusion-io Flash Memory as RAM Relief. 2013.
FusionIO. 1.1 a scalable block layer for high-performance ssd

storage. http://kernelnewbies.org/Linux_3.13,
2014a.

FusionIO. Fusion Power for MongoDB.
http://www.fusionio.com/white-papers/
fusion-power-for-mongodb, 2014b.

HammerDB. Hammerdb, version 2.16.
http://hammerora.sourceforge.net/, 2014.

U. Hoelzle and L. A. Barroso. The Datacenter As a Computer: An
Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, 1st edition, 2009.

X.-Y. Hu, E. Eleftheriou, R. Haas, L. LLiadis, and R. Pletka.
Write Amplification Analysis in Flash-Based Solid State
Drives. In Proceedings of SYSTOR, 2009.

A. Huffman. NVM Express Revision 1.1.
http://www.nvmexpress.org/wp-content/
uploads/NVM-Express-1_1.pdf, 2012.

Huffman, A. and Juenemann, D. The Nonvolatile Memory
Transformation of Client Storage. Computer, 46(8):38–44,
August 2013.

J. Corbet. Anticipatory I/O Scheduling.
http://lwn.net/Articles/21274/, 2003.

K. Jo. Scaling from Datacenter to Client. http://www.
flashmemorysummit.com/English/Collaterals/
Proceedings/2014/20140805_A12_All.pdf, 2014.

M. Larabel. SCSI Multi-Queue Performance Appears Great For
Linux 3.17, 2014.

MongoDB. MongoDB Storage. http:
//docs.mongodb.org/manual/faq/storage/,
2014a.

MongoDB. MongoDB 2.6 Manual.
http://docs.mongodb.org/manual/, 2014b.

MongoDB. Mongodb – write operations overview.
http://docs.mongodb.org/manual/core/
write-operations-introduction/, 2014c.

MongoDB. Performance Considerations for MongoDB.
http://info.mongodb.com/rs/mongodb/images/
MongoDB-Performance-Considerations_2.4.
pdf, 2014d.

NVM-Express. NVM Express Explained.
http://nvmexpress.org/wp-content/uploads/
2013/04/NVM_whitepaper.pdf, 2012.

Oracle. Mysql, version 5.5. http://www.mysql.com/, 2014.
S. L. Pratt and D. A. Heger. Workload Dependent Performance

Evaluation of the Linux 2.6 I/O Schedulers. In Linux
Symposium, Ottawa, Canada, July 2004.

M. Rice. Tuning Linux I/O Scheduler for SSDs, 2013. URL
http://dev.nuodb.com/techblog/
tuning-linux-io-scheduler-ssds.

Samsung. SM843 Pro Data Center Series. http://www.
samsung.com/global/business/semiconductor/
file/media/SM843_Brochure-0.pdf, 2013.

Samsung. XS1715 Ultra-fast Enterprise Class 1.6TB SSD.
http://www.samsung.com/global/business/
semiconductor/file/product/XS1715_
ProdOverview_2014_1.pdf, 2014.

SanDisk. The SanDisk Solution for Scaling Cassandra.
http://www.sandisk.com/assets/docs/The_
Sandisk_Solution_for_Scaling_Cassandra.pdf,
2013.

SanDisk. MongoDB Product Brief. 2014.
P. Snyder. tmpfs: A virtual memory file system. http://wiki.
deimos.fr/images/1/1e/Solaris_tmpfs.pdf,
1990.

S. Swanson and A. Caulfield. Refactor, reduce, recycle:
Restructuring the i/o stack for the future of storage. IEEE
Computer, 46(8):52–59, August 2013.

R. Thummarukudy. Designing a Configurable NVM Express
Controller/Subsystem.
http://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2014/20140807_I31_
Thummarukudy.pdf, 2014.

TPC. TPC-C Benchmark Standard Specification, Revision 5.11.
http:
//www.tpc.org/tpcc/spec/tpcc_current.pdf,
2010.

D. H. Walker. A Comparison of NVMe and AHCI. In The Serial
ATA International Organization, 2012.

J. Yang, D. B. Minturn, and F. Hady. When Poll is Better than
Interrupt. In Proceedings of FAST, 2012.

Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim,
H. Eom, and H. Y. Yeom. Optimizing the Block I/O Subsystem
for Fast Storage Devices. ACM Transactions on Computer
Systems (TOCS), 32(2), 2014.

http://git.kernel.dk/?p=fio.git;a=summary
http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html
http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_D11_Bates.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_D11_Bates.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_D11_Bates.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
http://lwn.net/Articles/10874/
http://planetcassandra.org/companies/
http://www.datastax.com/documentation/cassandra/1.2/cassandra/dml/dml_write_path_c.html?scroll=concept_ds_wt3_32w_zj__about-the-write-path
http://www.datastax.com/documentation/cassandra/1.2/cassandra/dml/dml_write_path_c.html?scroll=concept_ds_wt3_32w_zj__about-the-write-path
http://www.datastax.com/documentation/cassandra/1.2/cassandra/dml/dml_write_path_c.html?scroll=concept_ds_wt3_32w_zj__about-the-write-path
http://www.datastax.com/documentation/cassandra/1.2/cassandra/dml/dml_write_path_c.html?scroll=concept_ds_wt3_32w_zj__about-the-write-path
http://i.dell.com/sites/doccontent/business/large-business/en/Documents/BP1046_OLTP_IO_Profile_Study.pdf
http://i.dell.com/sites/doccontent/business/large-business/en/Documents/BP1046_OLTP_IO_Profile_Study.pdf
http://i.dell.com/sites/doccontent/business/large-business/en/Documents/BP1046_OLTP_IO_Profile_Study.pdf
http://kernelnewbies.org/Linux_3.13
http://www.fusionio.com/white-papers/fusion-power-for-mongodb
http://www.fusionio.com/white-papers/fusion-power-for-mongodb
http://hammerora.sourceforge.net/
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_1.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_1.pdf
http://lwn.net/Articles/21274/
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_A12_All.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_A12_All.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_A12_All.pdf
http://docs.mongodb.org/manual/faq/storage/
http://docs.mongodb.org/manual/faq/storage/
http://docs.mongodb.org/manual/
http://docs.mongodb.org/manual/core/write-operations-introduction/
http://docs.mongodb.org/manual/core/write-operations-introduction/
http://info.mongodb.com/rs/mongodb/images/MongoDB-Performance-Considerations_2.4.pdf
http://info.mongodb.com/rs/mongodb/images/MongoDB-Performance-Considerations_2.4.pdf
http://info.mongodb.com/rs/mongodb/images/MongoDB-Performance-Considerations_2.4.pdf
http://nvmexpress.org/wp-content/uploads/2013/04/NVM_whitepaper.pdf
http://nvmexpress.org/wp-content/uploads/2013/04/NVM_whitepaper.pdf
http://www.mysql.com/
http://dev.nuodb.com/techblog/tuning-linux-io-scheduler-ssds
http://dev.nuodb.com/techblog/tuning-linux-io-scheduler-ssds
http://www.samsung.com/global/business/semiconductor/file/media/SM843_Brochure-0.pdf
http://www.samsung.com/global/business/semiconductor/file/media/SM843_Brochure-0.pdf
http://www.samsung.com/global/business/semiconductor/file/media/SM843_Brochure-0.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.samsung.com/global/business/semiconductor/file/product/XS1715_ProdOverview_2014_1.pdf
http://www.sandisk.com/assets/docs/The_Sandisk_Solution_for_Scaling_Cassandra.pdf
http://www.sandisk.com/assets/docs/The_Sandisk_Solution_for_Scaling_Cassandra.pdf
http://wiki.deimos.fr/images/1/1e/Solaris_tmpfs.pdf
http://wiki.deimos.fr/images/1/1e/Solaris_tmpfs.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140807_I31_Thummarukudy.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140807_I31_Thummarukudy.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140807_I31_Thummarukudy.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

	Introduction
	NVMe Design Overview
	NVMe Performance Analysis
	Driver and blktrace Instrumentation
	Software Stack Overheads
	Device Bandwidth and Access Latencies

	DBMS Performance Evaluation
	Relational Databases: TPC-C
	TPC-C Experimental Setup and Optimizations
	TPC-C Performance Evaluation

	Cassandra
	MongoDB
	MongoDB Performance Considerations
	MongoDB Performance Analysis

	Related Work
	Software Stack Bottlenecks and Remedies
	NVMe Standard
	Industrial Solutions

	Conclusions

